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Mathematical Preliminaries

In this first introductory chapter, we introduce some mathematical
results that will be useful later on in the course. We’ll see several
intermediate value theorems, some calculus results, Leibniz’ rules
for differentiation under the integral sign, properties of concave
and convex functions, static optimization results and the envelope
theorem.

Intermediate value theorems

The intermediate value theorem is a basic result in mathematical
analysis. It states that if a continuous real valued function (on a
closed interval) reaches two values, it also attains every intermediate
value.

Figure 1: Illustration of the intermediate
value theorem.

Theorem 1. Let f : [a, b] → R be a continuous function on the interval
[a, b] and assume that the range f ([a, b]) includes the values m and M with
m < M, then for all z with m ≤ z ≤ M, there is a c ∈ [a, b] such that
f (c) = z.

Notice that c is not necessarily unique:
there might be more than one value in
[a, b] that attains the value z.Proof. Let xm, xM ∈ [a, b] such that f (xm) = m and f (xM) = M.

Case 1: xm < xM

Consider the set S = {x ∈ [xm, xM]| f (x) < z}. The set is bounded
from above by xM so S has a supremum (least upper bound), say c.

By the properties of a supremum, for all t, there is a xt ∈ S such
that c − 1/t < xt ≤ c, otherwise c is not the lowest upperbound.
In addition there is an yt /∈ S, yt ≤ xM such that c ≤ yt ≤ c + 1/t,
otherwise c is not an upperbound. Observe that f (xt) < z and
z ≤ f (yt), so.

f (xt) < z ≤ f (yt),

As both xt → c and yt → c it follows that, f (c) ≤ z ≤ f (c), so
f (c) = z.

Case 2: xm > xM
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This is very similar to the first part of the proof. Try it for yourself.

The first variation on the intermediate value theorem is the in-
tegrated mean value theorem. It states the for a continuous function
f on a closed interval. the area underneath f is always equal to the
size of a rectangle defined by the base [a, b] and the height of f (c) for
some c between a and b.

Figure 2: Illustration of the integrated
mean value theorem.

Theorem 2. Let f : [a, b] → R be a continuous function on the interval
[a, b] then there is a z ∈ [a, b] such that

∫ b
a f (t)dt = f (z)(b− a).

Again, notice that z is not necessarily
unique.

Proof. The function f (x) is continuous on the compact set [a, b] as
such, it reaches a maximum and minimum on this set, say m and M.
Then, for all x ∈ [a, b], m ≤ f (x) ≤ M, so

m(b− a) ≤
∫ b

a
f (x)dx ≤ M(b− a),

So,

m ≤ 1
b− a

∫ b

a
f (x)dx ≤ M,

From the intermediate value theorem there is a z ∈ [a, b] such that
f (z) = 1

b−a

∫ b
a f (x)dx as was to be shown.

Above theorem also shows that if f is C1, then there is a z ∈ [a, b]
such that

f (b)− f (a) = f ′(z)(b− a).

As a final variation on the intermediate value theorem, we present
the weighted mean value theorem.1 1 This theorem is also used to show the

validity of Taylor expansions.
Theorem 3. If f : [a, b]→ R and g : [a, b]→ R are continuous and g does
not change sign on [a, b] then there is a z ∈ [a, b] such that∫ b

a
f (x)g(x)dx = f (z)

∫ b

a
g(x)dx.

Proof. Assume wlog that g(x) ≥ 0 for x ∈ [a, b]. Then f (x) reaches
a minimum m and maximum M on [a, b], so for all x ∈ [a, b], m ≤
f (x) ≤ M, so

mg(x) ≤ f (x)g(x) ≤ Mg(x),

→m
∫ b

a
g(x)dx ≤

∫ b

a
f (x)g(x)dx ≤ M

∫ b

a
g(x)dx,

↔m ≤
∫ b

a f (x)g(x)dx∫ b
a g(x)dx

≤ M.
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By the intermediate value theorem, there is a z ∈ [a, b] such that,

f (z) =

∫ b
a f (x)g(x)dx∫ b

a g(x)dx
.

Calculus Techniques

If you take the derivative of a function f (x) at x0, you are looking at
by how much f (x0) increases if you increase x0 by the tiniest amount.
If you do this for all values of x in an interval [a, b] and add all these
changes together, you end up with the difference of f between the
starting and end point, i.e. f (b) − f (a). This is the main intuition
behind the fundamental theorem of integral calculus.

Theorem 4 (Fundamental theorem of integral calculus). If f : [a, b]→
R is continuous on [a, b] and

F(x) =
∫ x

a
f (t)dt,

is an integral of f (x), then the derivative of F(x) is

d
dx

[F(x)] = F′(x) = f (x).

Proof. Case 1: x ∈]a, b[ (i.e. a < x < b): let h ∈ R be such that
x + h ∈]a, b[. By definition, we have F(x + h) =

∫ x+ht
a f (y)dy and

F(x) =
∫ x

a f (y)dy. Taking the differences gives,

F(x + h)− F(x) =
∫ x+h

x
f (y)dy.

From the integral intermediate value theorem, there exists a num-
ber z ∈ [x, x + h] such that,

F(x + h)− F(x) =
∫ x+h

x
f (y)dy = f (z)h,

↔ F(x + h)− F(x)
h

= f (z).

Now, let h → 0. As z ∈ [x, x + h], we have that get z → x along this
sequence. As such, so limh→0

F(x+h)−F(x)
h exists and is equal to f (x).

This shows that F(x) is differentiable on ]a, b[ and F′(x) = f (x) for all
x ∈]a, b[.
Case 2: x = a. Observe that, for all h ∈ R+ small enough, by the
intermediate value theorem

F(a + h)− F(a) =
∫ a+h

a
f (y)dy = f (z)h,
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for some z ∈ [a, a + h]. Dividing both sides by h and taking a sequence
h→ 0 from the right, we see that F′(a) = f (a).
Case 3: x = b. The proof is similar taking a sequence h ∈ R−.

Given that differentiation and integration are so tightly linked,
it is no surprise that most manipulation rules for differentiation
produce a related rule for integration. Here we discuss three of such
rules.

Let y be a function of x and let f be a function of y. Then chain
rule for differentiation states that, The chain rule for differentiation
is,2 2 Of course, this is only valid if y is

differentiable at x and f is differentiable
at y(x).

d
dx

[ f (y(x))] = f ′(y)y′(x).

The counterpart of the chain rule for differentiation is the change of
variables rule in integration. Example: Let us solve∫ π/4

0
tan(x)dx =

∫ π/4

0

sin(x)
cos(x)

dx.

Introduce the change of variables
u = cos(x), then

du = − sin(x)dx,

so the integral becomes,∫ cos(π/4)

cos(0)
− 1

u
du,

∫ cos(π/4)

1
− 1

u
du,

=
∫ 1

cos(π/4)

1
u

du,

= [ln(u)]1cos(π/4),

= − ln(cos(π/4)).

Theorem 5. Let h : [t0, t1] be a C1 function with h(t0) = a, h(t1) = b Let
f : [a, b]→ R be a second continuous function, then∫ b

a
f (x)dx =

∫ h(t1)

h(t0)
f (x)dx =

∫ t1

t0

f (h(t))h′(t)dt.

Proof. Define F(t) =
∫ x

a f (y)dy, then by the fundamental theorem
of integration, F′(x) = f (x). By the chain rule, we have that for all
t ∈ [t0, t1],

d
dt

F(h(t)) = F′(h(t))h′(t) = f (h(t))h′(t).

Integrating both sides with respect to t, gives,∫ t1

t0

f (h(t))h′(t)dt = F(h(t1))− F(h(t0)) =
∫ h(t1)

h(t0)
f (x)dx =

∫ b

a
f (x)dx.

A second well known rule for differentiation is given by the
product rule. If u and v are two differentiable functions, then, Example: Lets evaluate∫ x1

x0
xexdx,

Let u(x) = x and v′(x) = ex . Then
u′(x) = 1 and v(x) = ex . Therefore∫ x1

x0
xex = x1ex1 − x0ex0 −

∫ x1

x0
exdx,

= (x1 − 1)ex1 − (x0 − 1)ex0 .

As a second exalple, let x0, x1 > 0 and
consider the integral∫ x1

x0
ln(t)dt.

First we perform a change of variables
u = ln(t) (i.e. t = eu) then dt

du = eu so,∫ ln(x1)

ln(x0)
ueudu.

Evaluating as above, we get

[(u− 1)eu]
ln(x1)
ln(x0)

,

= (ln(x1)− 1)x1 − (ln(x0)− 1)x0.

d
dx

(u(x)v(x)) = u′(x)v(x) + u(x)v′(x).

The counterpart of this rule in integration is called integration by
parts. It easily follows by integrating both sides of the product rule
(with some rearrangements).,∫ b

a
u(x)v′(x)dx = [u(x)v(x)]ba −

∫ b

a
v(x)u′(x)dx,

= u(b)v(b)− u(a)v(a)−
∫ b

a
v(x)u′(x)dx.

or briefly, ∫
uv′dx = uv−

∫
vu′dx.
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Leibniz’ rules

The Leibniz’ rules provide us with the tools to take derivative of
expressions that involve integrals. As a first part of the Leibniz’ rule
let us show that it is (in general) possible to exchange integration and
differentiation.3 3 In particular, the function should be

integrable, differentiable and the partial
derivative should also be integrable. A
sufficient condition is that the function
is C1 bounded (from above and below)
and that the first derivative is also
bounded.

Theorem 6. Assume that f (x, y) is defined and continuous on [a, b]× [c, d].
Then,

d
dx

[∫ d

c
f (x, y)dy

]
=
∫ d

c

∂ f (x, y)
∂x

dy.

Proof. Consider the expression,

d
dx

∫ d

c
f (x, y)dy =

d
dx

[∫ d

c

∫ x

a
fx(z, y)dz

]
dy,

=
d

dx

∫ x

a

[∫ d

c
fx(z, y)dy

]
dz,

=
∫ d

c
fx(x, y)dy.

The the first equality uses the fundamental theorem of integral
calculus. The second interchanges two integral signs.4 The third 4 Exchanging integration signs is known

as Fubini’s theorem.line is another application of the fundamental theorem of integral
calculus.

Let us now look at the case where not only the function f may
depend on x but also the limits of integration can be functions of x. As an example, let us compute

d
dx

∫ b
a e−xtdt. Leibniz’ rule gives,

d
dx

∫ b

a
e−xtdt =

∫ b

a
−te−xtdt.

Next, integrate by parts,

−
∫ b

a
te−xtdt = −

(
[−te−xt/x]ba −

∫ b

a

e−xt

x
dt
)

,

= −
(
−be−xb + ae−xa

x
− [−e−xt/x2]ba

)
,

=
be−xb − ae−xa

x
+
−e−xb + e−xa

x2 .

As a second example, let us compute

d
dx

∫ 2x

0
texdt.

From Leibniz’ rule,

d
dx

∫ 2x

0
texdt =

∫ 2x

0
texdt + 4xex ,

= [t2/2]2x
0 ex + 4xex ,

= (2x2 + 4x)ex .

Theorem 7. If f (x, t) is integrable and C1 on [a, b]× [c, d] and a(x) and
b(x) are C1 with values in [c, d], then

∫ b(x)
a(x) f (x, t)dt is differentiable with

respect to x on [a, b] and for all x ∈ [a, b],

d
dx

[∫ b(x)

a(x)
f (x, t)dt

]
=
∫ b(x)

a(x)
fx(x, t)dt + f (x, b(x))b′(x)− f (x, a(x))a′(x).

Proof. Let I(x) =
∫ b(x)

a(x) f (x, t)dt. From there I(x + h) =
∫ b(x+ht)

a(x+h) f (x +

h, y)dy. Then

I(x + h)− I(x) =
∫ b(x+h)

a(x+h)
f (x + h, y)dy−

∫ b(x)

a(x)
f (x, y)dy,

=−
∫ a(x+h)

a(x)
f (x + h, y)dy +

∫ b(x)

a(x)
( f (x + h, y)− f (x, y))dy

+
∫ b(x+h)

b(x)
f (x + h, y)dy,
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By the intermediate value theorem, there is a z1 ∈ [a(x), a(x + h)] such
that,

−
∫ a(x+h)

a(x)
f (x + h, y)dy = − f (x + h, z1)[a(x + h)− a(x)],

and there is a z2 ∈ [b(x), b(x + h)] such that,∫ b(x+h)

b(x)
f (x + h, y)dy = f (x + h, z2)[b(x + h)− b(x)].

Then,

I(x + h)− I(x)
h

=

∫ b(x)
a(x) ( f (x + h, y)− f (x, y))dy

h
− f (x + h, z1)

[a(x + h)− a(x)]
h

,

+ f (x + h, z2)
[b(x + h)− b(x)]

h
.

Taking a sequence h → 0 (and therefore z1 → a(x) and z2 → b(x),
and interchanging differentiation and integration, the right hand side
becomes ∫ b(x)

a(x)
fx(x, t)dt− f (x, a(x))a′(x) + f (x, b(x))b′(x).

Concave and convex functions

Concavity and convexity play a fundamental part in optimization
theory as they have a unique maximum (or minimum). In this part,
we give three equivalent definitions of concavity and convexity.

The first definition, is the one we all know, a function f : S → Rn

where S ⊆ Rn is a convex set is called concave if for all vectors
x, y ∈ S and all numbers α ∈ [0, 1],

Figure 3: Illustration of convex (above)
and concave (below) functions. Convex
functions are happy , concave functions
are sad.

f (αx + (1− α)y) ≥ α f (x) + (1− α) f (y).

If the inequality is reversed, the function f is called convex. If the
inequality is strict for all x 6= y and α ∈]0, 1[ then the function is
called strictly concave (convex). The following theorem gives an
equivalent definition of concavity (convexity) in cases the function f
is C1. It is very useful in the proof of many theoretical results.

Theorem 8. A C1 function f on a convex set S ⊆ Rn is concave if and only
if for all x, y ∈ S,

f (x)− f (y) ≤∑
i

∂ f (y)
∂yi

(xi − yi) = ∇y f (y)(x− y).
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The function f is convex if and only if for all x, y ∈ S,

f (x)− f (y) ≥∑
i

∂ f (y)
∂yi

(xi − yi) = ∇y f (y)(x− y).

Proof. We proof the case of concavity. The proof for convexity of f is
similar. (→) Let x, y ∈ S, then for all α ∈]0, 1[,

f (αx + (1− α)y) ≥ α f (x) + (1− α) f (y) = α [ f (x)− f (y)] + f (y),

↔ f (x)− f (y) ≤ f (y + α(x− y))− f (y)
α

.

Define the function g(α) = f (y + α(x− y)),5 then we have that for all 5 Observe that here we keep y and x
fixed. So g is a function of one variable,
α.

α ∈]0, 1[,

f (x)− f (y) ≤ g(α)− g(0)
α

.

Taking the limit for α→ 0 gives,

f (x)− f (y) ≤ g′(0) = ∑
i

∂ f (y)
∂yi

(xi − yi),

as was to be shown.
(←) Assume the inequalities are satisfied, then we have that, for all
x, y ∈ S,

f (x)− f (αx + (1− α)y) ≤∑
i

fi(αx + (1− α)y)(1− α)(xi − yi),

f (y)− f (αx + (1− α)y) ≤∑
i

fi(αx + (1− α)y)α(yi − xi).

Multiplying left hand right hand side of the first equation by α and of
the second equation by (1− α) and adding the two equations together
gives f (αx + (1− α)y) ≥ α f (x) + (1− α) f (y) as desired.

Let A be a symmetric n × n matrix.6 We say that A is negative 6 A matrix A is symmetric if ai,j = aj,i
where ai,j is the element on row i and
column j. In other words, A is sym-
metric if it is equal to it’s transpose.
Basically, we can reflect A on its di-
agonal and obtain the same matrix A
again.

semi-definite if for all vectors z ∈ Rn, z′Az ≤ 0 or equivalently,

∑
i

∑
j

zizjai,j ≤ 0.

The matrix A is negative definite if for all nonzero z, z′Az < 0, it is
positive semidefinite if for all z : z′Az ≥ 0 and positive definite if
the inequality is strict for all z 6= 0.

If f : S→ R with S ⊆ Rn is a C2 function, then the Hessian of f at
the point x∗ ∈ S is the n× n symmetric matrix of second order partial
derivatives,7 7 Here we use the notation,

fi,j(x∗) =
∂2 f (x∗)
∂xi∂xj

.

H f (x
∗) =


f11(x∗) f12(x∗) . . . f1n(x∗)
f21(x∗) f22(x∗) . . . f2,n(x∗)

...
...

. . .
...

fn1(x∗) fn2(x∗) . . . fnn(x∗)
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The following theorem shows that convexity or concavity can be
verified by looking at the definiteness of the Hessian.

Theorem 9. The C2 function f is concave on the open set S if and only if
H f (x) is negative semidefinite for all x ∈ S. The function f is convex if and
only if the Hessians are positive semidefinite. 8 8 Observe that if f is a one-dimensional

function (i.e. S ⊆ R), then the Hessian
is negative semi-definite if and only if
the second order derivative f ′′(x) ≤ 0
for all x ∈ S. So concavity of f is equal
to f ′′(x) ≤ 0, but we already knew this.

If the Hessians are negative (positive) definite, then the function f is
strictly concave (convex).

Proof. Assume f is concave, then for all x and z and all numbers
t > 0 small enough.

f (x)− f (x + tz) ≤∑
i

∂ f (x + tz)
∂xi

(−tzi),

f (x + tz)− f (x) ≤∑
i

∂ f (x)
∂xi

(tzi).

Adding the left and right hand sides together gives,

0 ≤∑
i

(
∂ f (x)

∂xi
− ∂ f (x + tz)

∂xi

)
tzi.

Define gi(t) =
∂ f (x+tz)

∂xi
.9 Then, 9 Here x and z are fixed, so gi is a

function of t alone.

0 ≤∑
i
(gi(0)− gi(t)) tzi.

↔0 ≤ −∑
i

gi(t)− gi(0)
t

zi.

Taking the limit for t→ 0 gives,10 10 This uses the fact that g′i(0) = ∑j fi,jzj.
You should check this.

0 ≤ −∑
i

g′i(0)zi,

↔0 ≤ −∑
i

∑
j

fij(x)zjzi = −z′H f (x)z.

Given that the choice of x ∈ S and z ∈ Rn was arbitrary, we have that
H f (x) is negative semi-definite for all x ∈ S.

For the reverse, assume that H f (x) is negative semi-definite. Let
x, y ∈ S and let z = (y − x)/α. Then y = x + αz ∈ S. Define
g(α) = f (x + αz) and take a second order Taylor expansion of g(α)
around g(0). Then

g(α) = g(0) + g′(0)α +
α2

2
g′′(β),

for some β ∈ [0, α]. Then,

f (x + αz) = f (x) + α ∑
i

∂ f (x)
∂xi

zi +
α2

2 ∑
i

∑
j

fij(x + βz)zizj.
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By negative semi-definiteness, the last term is smaller or equal to
zero. So,

f (x + αz)− f (x) ≤∑
i

∂ f (x)
∂xi

(x + αz− x)

↔ f (y)− f (x) ≤∑
i

∂ f (x)
∂xi

(y− x).

so f is concave.

Now, how do we check if a symmetric matrix A is positive or
negative (semi)-definite. There is an ‘easy’ rule depending on leading
minors. The matrix Hk is the kth leading principal minor of the
matrix of the matrix A if it is equal to the matrix obtained from A
by deleting all but the first k rows and columns. The matrix Rk is a
principal minor of A if it is obtained by deleting n− k rows and the
corresponding n− k columns of A. Then,11 11 A proof of this is beyond the scope of

these notes.
• A is positive definite if and only if det(Hk) > 0 for all k ≤ n.

• A is negative definite if and only if (−1)k det(Hk) > 0 for all k ≤ n.

• A is positive definite if and only if det(Rk) ≥ 0 for all principal
minors.

• A is negative semi-definite if and only if (−1)k det(Rk) ≥ 0 for all
principal minors.

Free or unconstrained optimization

Unconstrained optimization problems try to find the max-
imal or minimal value some (mostly continuous) function without
imposing any additional restrictions on the values of the underlying
variables.12 We first have a look at single valued functions and then 12 Of course, the values should ly in the

domain of the function.consider functions of more than one variable.

Definition 1. Let f : [a, b] → R be a C1 function where a, b ∈ R and
a < b. If f (x∗) ≥ f (x) for all x ∈ S, then x∗ is a global maximum. If
f (x∗) > f (x) for all x ∈ S, then x∗ is a strict global maximum.

If for all x in a small neighbourhood of x∗, e.g. x ∈ [x∗ − ε, x∗ + ε] ∩ S
for some ε > 0, f (x∗) ≥ f (x) then x∗ is called a local maximum. If
f (x∗) > f (x), then x∗ is a strict local maximum.

Figure 4: points 1, 3 and 5 are local
minima and 2 and 4 are local maxima.
Point 2 is the global maximum while
point 3 is the global minimum.

Assume that x∗ is a local maximum. Then there are three possibili-
ties:
Case 1: x = a In this case, we have that for some ε > and all
x ∈ [a, a + ε], there is a z ∈ [a, a + ε]13

13 The existence of z is guaranteed by
the integrated mean value theorem: as
f =

∫ x
a f ′(y)dy, there is a z ∈ [a, x] such

that

f ′(z)(x− a) =
∫ x

a
f ′(y)dy,

= f (x)− f (x).
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0 ≥ f (x)− f (a) = f ′(z)(x− a),

↔0 ≥ f (x)− f (a)
x− a

= f ′(z).

Now, take a sequence x → a. Then we see that f ′(a) ≤ 0.
Case 2: x = b In this case, we have that for all x ∈ [b− ε, b], there is a
z ∈ [x, b] such that,

0 ≤ f (b)− f (x) = f ′(z)(b− x),

↔0 ≤ f (b)− f (x)
b− x

= f ′(z).

Taking a sequence x → b, shows that f ′(b) ≥ 0.
Case 3: a < x∗ < b In this case, we have that for all x ∈ [x∗ − ε, x∗ + ε]

there is a z between x∗ and x such that,

0 ≤ f (x∗)− f (x) = f (z)(x∗ − x).

As such, for x∗ > x, we have that f ′(z) > 0 and for x∗ < x, we have
that f ′(z) < 0. By continuity of f ′, and letting ε → 0, it follows that
f ′(x∗) = 0, i.e. the derivative at the local optimum is equal to zero.
This is the well known first order condition for interior solutions.

Summarizing, we have that,

1. If a is a local optimum→ f ′(a) ≤ 0,

2. If b is a local maximum→ f ′(b) ≥ 0,

3. If x is an interior local maximum→ f ′(x) = 0.

These conditions are called the first order conditions. In general they
are not sufficient. One important exception is when f is concave.
Indeed, if f is concave and f ′(a) ≤ 0 then for all x ∈ [a, b],14 14 Notice that (x − a) ≥ 0 for all

x ∈ [a, b].

f (x)− f (a) ≤ f ′(a)(x− a) ≤ 0,

so a is also a global maximum. If f ′(b) ≥ 0 then for all x ∈ [a, b],

f (x)− f (b) ≤ f ′(b)(x− b) ≤ 0,

so b is a global maximum. Finally, if f ′(x∗) = 0 then, for all x ∈ [a, b].

f (x)− f (x∗) = f ′(x∗)(x− x∗) = 0,

so again x∗ is a global maximum.

Let us now have a look at maximization problems where f is a
function of many, say n, variables x1, . . . , xn and f is defined on
a set S ⊆ Rn. If the point x∗ = (x∗1 , . . . , x∗n) belongs to S and if
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f (x∗) is greater or equal than the values of f at all other points
x = (x1, . . . , xn) of S, so

∀x ∈ S : f (x∗) ≥ f (x).

then x∗ is called a global maximum point for f in S and f (x∗) is
called the maximum value. If the inequality is strict for all x 6= x∗

and x ∈ S, then x∗ is a strict maximum point of f in S. The (strict)
minimum point is defined by reversing the inequality sign. Maxima
and minima are collected using the term extreme points. Local
maxima and minima are points that are maximal and minimal in a
small neighborhood around the point.15 15 By the extreme value theorem, any

continuous function f : S → R defined
on a compact set S ⊂ Rn always
attains a global maximum and global
minimum on that set. This maximum
can either be interior or at a corner of
the domain.

A stationary point of f is a point where all the first-order partial
derivatives are 0.16

16 So for all xi ,
∂ f (x)

∂xi
= 0.

Theorem 10. Let f be defined on a set S ⊆ Rn and let x∗ be an interior
point in S (i.e. there is a ε > 0 such that Bε(x∗) ⊆ S) at which f has partial
derivatives. A necessary condition for x∗ to be a maximum or minimum
point for f is that x∗ is a stationary point for f , i.e.

∀i = 1, . . . , n :
∂ f (x∗)

∂xi
= 0.

Proof. For i = 1, . . . , n, consider the functions,17 17 Here we keep all values
x∗1 , . . . , x∗i−1, x∗i+1, . . . , x∗n fixed and
only vary xi .gi(x) = f (x∗1 , . . . , x∗i−1, x, x∗i+1, . . . , x∗n).

The function gi reaches a local maximum at the interior point x∗j from
the previous analysis,

gi′(x∗i ) = fi(x∗) = 0.

This holds for all i ≤ n so all partial derivatives should be equal to
zero.

Theorem 11. Let f be defined in a convex set S ⊆ Rn and let x∗ be an
interior point of S. Assume also that f is C1 in an open ball around x∗.

• If f is concave, then x∗ is a global maximum if and only if x∗ is a station-
ary point.

• If f is convex, then x∗ is a global minimum if and only if x∗ is a station-
ary point.

Proof. The only if part follows from the previous theorem. Now
assume that x∗ is a stationary point and that f is concave. Then as f
is concave, we have that for all x ∈ S,

f (x)− f (x∗) ≤∑
i

∂ f (x)
∂xi

(xi − x∗i ) = 0,

which means that f (x∗) is a global maximum.
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Constrained Optimization

In a constrained optimization problem, we are optimizing a
function of some variables, but the possible values of these variables
have to satisfy some constraints. The implicit value theorem is a key
tool in the analysis of these problems.

Theorem 12 (Implicit function theorem). Consider a C1 function of two
variables g(x, y). If at (x0, y0), g(x0, y0) = 0 while ∂g(x0,y0)

∂y 6= 0. Then
there is a region [x1, x2]× [y1, y2] containing (x0, y0) such that for all x ∈
[x1, x2] there is exactly one value y = ψ(x) such that ψ(x) ∈ [y1, y2] and
g(x, ψ(x)) = 0. In addition, the function ψ is continuous and differentiable
with

ψ′(x0) = −
∂g(x0,y0)

∂x
∂g(x0,y0)

∂y

.

Figure 5: Illustration of the proof of the
implicit function theorem: green where
f (x, y) > 0 and red where f (x, y) < 0.
as f (x, y) is increasing in y we have that
for each x, there is only a single point
ψ(x) where f (x, ψ(x)) = 0.

Proof. Assume without loss of generality that ∂g(x0,y0)
∂y > 0. Given that

g(x0, y0) = 0, we have that that g(x0, y0) is locally strictly increasing
in its second coordinate. So, there is a c > 0 such that g(x0, y0 + c) >
0 > g(x0, y0 − c). Also because of continuity of f , there is an interval
[x1, x2] such that for all x ∈ [x1, x2], g(x, y0 + c) > 0 > g(x, y0 − c).
By the intermediate value theorem, for all x ∈ [x1, x2] there is an
y ∈ [y0 − c, y0 + c] such that g(x, y) = 0. Let us show that there is only
one such value so that y is a function of x.

If not, there are values ỹ > ŷ such that g(x, ỹ) = g(x, ŷ) = 0. But
then,

0 = g(x, ỹ) = g(x, ŷ) +
∫ ỹ

ŷ
gy(x, y)dy > g(x, ŷ) = 0,

a contradiction.
Given this, there is a function ψ(x) such that g(x, ψ(x)) = 0 for all

x in [x1, x2]. As g is C1 we can take the derivative and obtain,

∂g(x0, y0)

∂x
+

∂g(x0, y0)

∂y
ψ′(x0) = 0,

↔ψ′(x0) = −
∂g(x0,y0)

∂x
∂g(x0,y0)

∂y

.

Now that we are armed with the implicit function theorem let us try
to tackle the following maximization problem,

max
x,y

f (x, y),

s.t. g(x, y) = c.
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where f (x, y) and g(x, y) are two C1 functions of two variables. As-
sume that (x∗, y∗) provide a solution to this problem and assume
that

∂g(x∗, y∗)
∂y

6= 0.

By the implicit function theorem (see above), we know that there is a
function ψ(x), defined locally around x∗, such that g(x, ψ(x)) = 0.18 18 And

ψ′(x0) = −
∂g(x0 ,y0)

∂x
∂g(x0 ,y0)

∂y

.
Let us substitute ψ(x) into the objective function,

max
x

f (x, ψ(x)).

Now for each of the values x in this small neighbourhood of x∗, we
know that g(x, ψ(x)) = 0, so (x, ψ(x)) satisfies the constraint of the
optimization problem. However, only x∗ is the optimal one. As such,
we can use the first order condition on f (x, ψ(x)) and obtain,19 19 Here, for ease of notation, we use

fx , fy, gx and gy to indicate the partial
derivatives of f and g with respect to x
and y.

fx(x∗, ψ(x∗)) + fy(x∗, ψ(x∗))ψ′(x∗) = 0,

↔ fx(x∗, y∗)− fy(x∗, y∗)
gx(x∗, y∗)
gy(x∗, y∗)

= 0.

Define λ∗ =
fy(x∗ ,y∗)
gy(x∗ ,y∗) . Then we can write,

fx(x∗, y∗)− λ∗gx(x∗, y∗) = 0,

fy(x∗, y∗)− λ∗gy(x∗, y∗) = 0.

These conditions can be summarized by using the Lagrange function.

L(x, y, λ) = f (x, y)− λ(g(x, y)− c).

Then the above two conditions give,

Lx(x∗, y∗; λ∗) = 0,

Ly(x∗, y∗; λ∗) = 0,

Lλ(x∗, y∗; λ∗) = g(x∗, y∗)− c = 0.

These are the well known Lagrangian first order conditions for an
interior solution.

The Lagrange multiplier λ has a convenient interpretation. Let
L(c) be the optimal value for the following optimization problem,

L(c) = max
x,y

f (x, y) s.t. g(x, y) = c.

Let x(c), y(c) be the solution of this maximization problem.20 For 20 L(c) is obtained by plugging in
the solutions of the optimization
problem into the objective function:
L(c) = f (x(c), y(c)).

different values of c, there will be different solutions, so the optimal
value and optimal solutions will be a function of the value of c
(parameter).

L(c) = f (x(c), y(c)) = max{ f (x, y) : g(x, y) = c}.
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Then, taking the total derivative with respect to c,21 gives, 21 Assuming that x(c) and y(c) are
differentiable with respect to c

d
dc

L(c) = fx(x(c), y(c))x′(c) + fy(x(c), y(c))y′(c),

= λ∗
[
gx(x(c), y(c))x′(c) + gy(x(c), y(c))y′(c)

]
.

The equality is obtained by using the Lagrangian first order condi-
tions. Now, as g(x∗(c), y∗(c)) = c we also have that,22 22 Take derivatives with respect to c on

both sides.

gx(x(c), y(c))x′(c) + gy(x(c), y(c))y′(c) = 1.

As such,

d
dc

L(c) = λ∗

The intuition is now clear, the Lagrange multiplier λ∗ measures by
how much the optimal value of the maximization problem changes if
the constrained c changes by an infinitesimal amount. It is therefore
the marginal value of the constraint. Economists often use the term
‘shadow price’ to denote this quantity.23. 23 The shadow price is the implicit price

you would be willing to ‘pay’ (in terms
of the objective function) in order to
relax the constraint by one unitSimilar to the setting without constraints, constraint optimization

problems also have a set of sufficient second order conditions. This
second order condition is that the function F(x) = f (x, ψ(x)) is
(locally) concave at x∗, i.e. the second derivative F′′(x∗) < 0. Now,
the first derivative reads,

Fx(x∗) = fx(x∗, y∗) + fy(x∗, y∗)ψ′(x∗),

↔Fx(x∗) = Lx(x∗, y∗; λ∗) + Ly(x∗, y∗; λ∗)ψ′(x∗).

This equality follows from the fact that gx(x∗, y∗) + gy(x∗, y∗)ψ′(x∗) =
0.24 Again differentiating both sides gives, 24 So we can add this term to the right

hand side and keep the equality for all
x.Fx,x(x∗) = Lx,x + 2Lx,yψ′ + Ly,y

[
ψ′
]2

+ Lyψ′′.

The last term is zero from the first order conditions.25 Then, substitut- 25 Ly = fy + λgy = 0.

ing ψ′ = −gx/gy, gives,

Fx,x =
1[

gy
]2 [ [gy

]2 Lx,x − 2Lx,ygxgy + Ly,y [gx]
2
]

.

The expression between brackets is the exact negative of the determi-
nant of the “bordered Hessian"26 26 Remember the determiniant of a 3 by

3 matrix

a b c
d e f
g h i

 is given by

aci + b f g + dhc− ceg− bdi− f ha.

 Lλλ = 0 Lλx = −gx Lλy = −gy

Lxλ = −gx Lxx Lxy

Lyλ = −gy Lyx Lyy


(x∗ ,y∗ ,λ∗)

So if this determinant is positive, then F′′(x∗) < 0 and the optimum
is a maximum.
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Most of what we established above can be generalized to problems
with more than two variables. Consider the objective function f :
D ⊆ Rn → R and a number of constraint functions gj : D → R, j =
1, . . . , m with values cj ∈ R.

Theorem 13. If f and gj are C1 in the neighbourhood of an interior point
x∗ ∈ D and the rank of Jg(x∗) (the Jacobian of the gj’s) at x∗ equals m, if a
maximum or a minimum of f subject to the constraints gj(x) = cj occurs at
x∗ and if,

L(x, λ) = f (x)−∑
j

λj(gj(x)− cj),

then there is a λ∗ ∈ Rm such that for all i = 1, . . . , n,

Lxi (x∗, λ∗) = 0.

and Lλj(x∗, λ∗) = 0.

The proof of this result is very similar to the proof of the single
constraint optimization problem. Except here we have a multidimen-
sional implicit function theorem. There are also a set of sufficient sec-
ond order conditions. If f and gj are C2 in the neighbourhood of x∗,
an interior point of D at which Jacobian Jg is of rank m and such that
if L(x, λ) = f (x)−∑j λj(gj(x)− cj), there exists λ∗ ∈ Rm such that for
all i = 1, . . . , n, ∂L

∂xi
(x∗, λ∗) = 0 and for all j = 1, . . . , m, ∂L

∂λj
(x∗, λ∗) = 0.

Then if

H̄(x∗, λast) =



0

−g1
x1

. . . −g1
xn

...
. . .

...
−gm

x1
. . . −gm

xn

−g1
x1

. . . −gm
x1

...
. . .

...
−g1

xn . . . −gm
xn

Lxixj


(x∗ ,λ∗)

• If the (n−m) last principal diagonal minors alternate in sign and
if |H̄(x∗, λ∗)| has the same sign as (−1)n then f attains a local
maximum subject to constraints gj(x)− cj = 0 at x∗.

• If those minors all have the sign of (−1)n, there is a constrained
minimum at x∗.

Let us now consider a setting where we want to maximize a function
f : D ⊆ Rn → R and we have constraint functions gj : D → R for
j = 1, . . . , m. Let cj ∈ R but we don’t impose equalities but instead
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inequalities on the constraints,

max
x

f (x),

s.t. gj(x) ≤ cj, (j = 1, . . . , m)

xi ≥ 0, (i = 1, . . . , n).

Because of the inequalities, the usual Lagrange conditions are no
longer applicable.

In order to solve this problem, the key insight is to rephrase it
as a problem with equality constraints. Towards this end, let us
introduce for each constraint j a variable yj, (j = 1, . . . , m) and for
each variable xi a new variable zi, (i = 1, . . . , n) and consider the
following problem,

max
x

f (x),

s.t. gj(x) + y2
j = cj, (j = 1, . . . , m)

xi − z2
i = 0, (i = 1, . . . , n).

Verify for yourself that any solution to this problem is also a solution
to the problem with inequality constraints and vice versa. Given that
we have a regular problem with equality constraints, we can setup
the Lagrangian,

L(x, y, z; λ, µ) = f (x) + ∑
j

λj(cj − gj(x)− y2
j ) + ∑

i
µi(xi − z2

i ).

In addition to the first order conditions for xi and λj, we also need to
take into account the first order conditions for yj, zi and µi. The first
order conditions are given by,

Lxi = fxi (x∗)−∑
j

λj∗gj
xi (x∗) + µi∗ = 0,

Lyj = 2λj∗yj = 0,

Lzi = −2µi∗zi = 0,

Lλj = cj − gj(x∗)− y2
j = 0,

Lµi = xi − z2
i = 0.

The third condition is satisfied only if µi = 0 or zi = 0. If zi = 0 then
the last constraint tells us that xi = 0. If the former is the case, then,

fxi (x∗)−∑
j

λj∗gj
xi = 0.

These two conditions, together require that,

x∗i

[
fxi (x∗)−∑

j
λj∗gj

xi (x∗)

]
= 0.
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For the second first order condition to be satisfied, it must be that
either λj∗ = 0 or yj = 0. If the latter is the case, then the second to
last constraint tells us that gj(x∗)− cj = 0. As such, we obtain the
condition that,

λj∗
[

gj(x∗)− cj
]
= 0.

In addition, using the same reasoning as before, we see that λj is the
shadow price of cj and µi is the shadow price of allowing xj to be
slightly negative. As such, we should have that λj, µi ≥ 0.

This latter condition is called the complementary slackness con-
ditions. They have intuitive interpretations. Remember that λj mea-
sures the marginal value of the j-th constraint.27 Then if λj = 0 this 27 By how much does the optimal value

function increases if we relax the jth
constraint by one.

means that relaxing the constraint does not increase the optimal
value. This can only be if the constraint is not binding. On the other
hand, if λj > 0, then the constraint must be binding, i.e. gj(x∗) = cj.
Otherwise we could increase the optimal value without violating
any constraints. In addition, the optimal value cannot decrease if the
constrained is relaxed, which gives the additional condition λ∗j ≥ 0.

Summarizing, we obtain the following conditions,28 28 These conditions are called the
Kuhn-Tucker first order conditions.

Lxi (x∗, λ∗) = fxi (x
∗)−∑

j
λj∗gj

xi (x∗) ≤ 0,

x∗i ≥ 0,

x∗i Lxi (x∗, λ∗) = 0,

Lλj = gj(x∗)− cj ≥ 0,

λ∗j ≥ 0,

λj∗Lλj(x∗, λ∗) = λj∗[gj(x∗)− cj] = 0.

It is rather difficult to obtain locally sufficient conditions.
However, if the functions

• f and gj’s are differentiable on D ∩ {x ∈ Rn : x ≥ 0} = E

• f is concave on E

• the functions gj are convex on E,

• x∗ satisfies the conditions of the Kuhn-Tucker,

then f subject to gj(x) ≤ cj and x ≥ 0 attains a global maximum at
x∗.29 29 The proof is quite easy. As the gj’s are

convex, the sets Ej = {x ∈ Rn : gj(x) ≤
cj} are also convex. Then ∩Ej is also
convex and closed. As f is a concave on
a convex set, it follows that any local
optimum is also a global optimum.

Envelope theorems
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We are already familiar with the fact that the Lagrange multiplier
can be seen as the marginal value of relaxing the constraint in the
optimization problem. This result is a particular case of a more
general result, called the envelope theorem.30 In any optimization 30 The envelope theorem obtains its

name from the fact that the optimal
value function can be seen as the upper
(or lower) envelope of the objective
function for varying values of the
parameter.

problem (constrained or not), if one or several parameters are present,
the envelope theorem tells you how much the optimal value of the
objective function changes when one of the parameters is modified?

Let us first take the case of an optimization problem with no side
constraints. Let f (x, α) be C1 for x ∈ D, an open subset of Rn, and
a set of parameters α ∈ Rs. For each α the following problem is
considered:

max
x∈D

f (x, α).

Theorem 14. Assume x(α) is an interior solution of the latter problem and
x(α) is C1 in α, then,

d
dαs

[ f (x(α), α)] = fαs(x(α), α).

Let p be the price of an output y, let x
be a vector of inputs and let w be the
vector of input prices. Then the profit
of a firm with production function
y = f (x) is given by,

π(p, w) = max
x

p f (x)−∑
i

wixi .

By the envelope theorem, we have
that πp(p, w) = f (x∗) = y∗ and
πwi (p, w) = −x∗i . These are called
Hotelling’s lemma.

Proof. Let V(α) = f (x∗(α), α). This function is C1. then

Vαs(α) = ∑
i

fxi (x(α), α)
∂xi(α)

∂αs
+ fαs(x(α), α),

= fαs(x(α), α).

Consider now the case of an optimization problem with constraints.
Let f and gj(j = 1, . . . , m) be C1 functions on D, an open subset of
Rm, α ∈ RS and c ∈ Rm. Assume x∗(α) is a solution ot the problem:

max
x∈D

f (x, α),

s.t. gj(x, α) = cj,

for all j = 1, . . . , m. Assume x(α) and the Lagrange multipliers λj(α)

are C1 in α and the Jacobian of the constraints
(

∂gj

∂xi
(x∗(α), α)

)
has a

rank equal to m.

Theorem 15. Let V(α) = maxx∈D f (x, α) subject to gj(x, α) = cj.
Assume that x(α) and V(α) are differentiable in αs. Then

Vαs(α) = fαs(x(α), α)− λ∗gα(x(α), α).

Let v(p, x) be the indirect utility func-
tion defined by v(p, x) = maxq u(q)
subject to ∑i piqi = x where pi is the
price of good i, x is the total income, q
is the quantity demanded and u(q) is a
utility function. Then by the envelope
theorem,

vpi (p, x) = −λq∗i (p, x),

vx(p, x) = λ.

Taking ratios,

q∗i (p, x) = −
vpi (p, x)
vx(p, x)

,

which is better known as Roy’s identity.
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Proof. Let V(α) = f (x(α), α). Then

Vαs(α) = ∑
i

∂ f
∂xi

(x∗(α), α)
∂xi(α)

∂αs
+ fαs(x(α), α).

Substituting the first order conditions into this differential gives,

Vαs(α) = ∑
i

∑
j

λj∗gj
xi
(x(α), α)

∂xi(α)

∂αs
+ fαs(x(α), α),

= ∑
j

λj∗∑
i

[
gj

xi (x∗(α), α)
∂xi(α)

∂αs

]
+ fαs(x(α)).

As gj(x∗(α), α) = cj we have that,

∑
i

gj
xi (x(α), α)

∂xi(α)

∂αs
+ gj

αs(x(α), α) = 0.

As such,

Vαs(α) = −∑
j

λ∗j gj
αs(x(α), α) + fαs(x∗(α),

Exercises

Unconstrained Optimization Find the extreme points of the following
functions.

• f (x, y) = x3 + y3 − 3xy. (sol: (0, 0) saddle point and (1, 1) a local
minimum point)

• f (x, y) = y2 + xy ln(x). (sol: (1, 0) saddle point and (1/e, 1/(2e))
minimum point)

• f (x, y, z) = x2 + 2y2 + 3z2 + 2xy + 2xz. (sol: (0, 0, 0) minimum
point)

Constrained optimization Optimize the following functions.

• f (x, y) = xy subject to 4x + 2y = 80 (sol: (10, 20) maximum point).

• f (x, y) = (x− 1)2 + y2 + z2 subject to x + y + z = 4. (sol: (2, 1, 1)
minimum point)

• f (x, y, z) = x2 + y2 + z2 subject to x + y + z = 3 and z = 1. (sol:
(1, 1, 1) minimum point)
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Inequality Constraints Optimize the following functions.

• f (x) = x2 − 5x + 6 subject to x ≥ 0. (sol: (5/2) a mininmum and 0
a (local) maximum).

• f (x, y) = (x− 1)2 + (y− 2)2 subject to x ≥ 0 and y ≥ 0. (sol: (1, 0)
saddle point, (0,2) saddle point, (0,0) maximum point and (1, 2)
minimum point.)

• f (x, y) = 4− x− y subject to x2 + y2 ≤ 1. (sol: (−
√

1/2,−
√

1/2)
maximum and (

√
1/2,
√

1/2) minimum).

• f (x, y) = 2x + 2y− x2 − y2 subject to x + y ≤ 1, x ≥ 0, y ≥ 0. (sol:
(0, 0) which is the lowest, (0, 1), (1, 0) and (1/2, 1/2) which is the
highest.)



Differential equations

Economists are often interested in studying the change in
economic variables, e.g. national income, interest rate, employment,
inflation. The law of motion that governs these variables is often
expressed in terms of one or more equations.

If time is considered as continuous and the equations involve un-
known functions and their derivatives, we are considering so called
differential equations. Such equations are often used in macroeco-
nomic theory but also pop up in many other areas of economics.

As the name suggest a differential equation is an equation. How-
ever, unlike usual algebraic equations, for differential equations the
unknown is a function and the equation includes one or more of the
derivatives of this ‘unknown’ function.

To begin, we restrict ourselves to first-order differential equa-
tions, that is equations where only the first-order derivative of the
unknown functions of one variable are included.

y′ = F(y, t).

Here y is considered to be a function of a single variable (say t) and
we use the notation y′ to denote the derivative ∂y(t)

∂t . You can think
about the variable t as time and y(t) as the path of some variable y
over time. Typical examples are

y′ = ay, y′ + ay = b y′ + ay = by2.

For an economic example, assume the
capital stock of a firm evolves according
to the differential equation,

k′(t) = i(t)− δk(t),

where i(t) is the rate of investment
at time t and δ is the instantaneous
depreciation rate. A natural question
is: given some initial amount of captial
k(0) = k0 and a path of investments i(t),
what is the capital stock k(t) at a certain
point in time.

The following are some problems one might encounter.

1. Find all possible solutions, i.e. functions y(t) that satisfy some
differential equation.

2. Cauchy problem: find a (the) solution y(t) that solves the dif-
ferential equation and additionally meets a certain set of initial
conditions, e.g. y(t0) = y0, y′(t0) = y′0, . . ..

3. Limits problem: find a solution y(t) of the differential equation,
defined on the interval [t0, t f ] such that y(t0) = y0 and y(t f ) = y f .
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Although we often use t to denote the
independent variable because most
differential equations that appear in
economics have time as their inde-
pendent variable, it is interesting to
realize that the theory is also valid
even if the independent variable is not
time. For example, in the literature on
optimal nonlinear taxation, optimal tax
schedules are often characterized by
differential equations of some function
τ(y) where y is pre-tax income and τ(y)
gives the tax rate for income level y.

The general solution to a particular differential equation gives a for-
mula for y(t) that may contain some parameters whose particular
value allows one to solve any Cauchy problem that may be encoun-
tered. For some types of equations, there are theorems demonstrating
existence and uniqueness of a solution to each Cauchy problem.
Many such theorems are “local” (assuming existence and unique-
ness in a neighbourhood). Other theorems (strong hypotheses) are
“global” or “regional”. For some (privileged) types of differential
equations (e.g. linear differential equations with constant coefficients
and continuous right hand side) there is existence and uniqueness of
a solution to any Cauchy problem, anywhere.

First order differential equations

A first order differential equation can be written as an equation of
the following form,

P(y, t)y′ + Q(y, t) = 0.

Here, P(y, t) and Q(y, t) are two functions of two variables, y and t
and where and y = y(t) is the unknown function of interest.

A particular class of first order differential equations are the exact
differential equations. The differential equation P(y, t)y′ + Q(y, t) =
0 is exact if there exist a function µ(y, t) of the two variables y and t
such that,31 31 Here we use the notation,

∂µ(y, t)
∂y

= µy(y, t),

∂µ(y, t)
∂t

= µt(y, t).

µy(y, t) = P(y, t),

µt(y, t) = Q(y, t).

An exact differential equation has the implicit solution,

µ(y(t), t) = c,

Indeed, taking the derivative of both sides with respect to t gives,

µy(y(t), t)y′ + µt(y(t), t) = 0,

↔P(y, t)y′ + Q(y, t) = 0.

Young’s theorem32 tells us that when a differential equation is exact, 32 Young’s theorem states that if f (x, y)
is C2 then,

∂2 f (x, y)
∂x∂y

=
∂2 f (x, y)

∂y∂x
.

then for all (y, t) it must be that,

Pt(y, t) = µy,t(y, t) = µt,y(y, t) = Qy(y, t).

In fact, it turns out, that this is also a sufficient condition for the
differential equation to be an exact equation.
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An exact differential equation can be solved using the following
steps.

1. First, you check the condition Pt(y, t) = Qy(y, t) in order to make
sure that the differential equation is indeed exact.

2. Next you integrate µt(y, t) = Q(y, t) with respect to t (over the
interval [t0, t]) to obtain an expression for µ(y, t), i.e.

µ(y, t)− µ(y, t0) =
∫ t

t0

Q(y, τ)dτ.

3. Next, we differentiate both sides of this identity with respect to y,
giving33 33 Observe the exchange of integration

and differentiation.
∂µ(y, t)

∂y
− ∂µ(y, t0)

∂y
=
∫ t

t0

∂Q(y, τ)

∂y
dt =

∫ t

t0

∂P(y, τ)

∂τ
dt = P(y, t)− P(y, t0).

The last equality follows from the equality of Qy(y, t) and Pt(y, t).

Also ∂µ(y,t)
∂y = P(y, t) so we obtain the equation,

∂µ(y, t0)

∂y
= P(y, t0).

4. Integrating both parts of the identity above, gives,

µ(y, t0)− µ(y0, t0) =
∫ y

y0

P(γ, t0)dγ.

5. Finally, µ(y, t0) can be substituted back into the condition obtained
in step 2 to obtain,

µ(y, t) =
∫ t

t0

Q(y, τ)dτ +
∫ y

y0

P(γ, t0)dγ + µ(y0, t0).

where µ(y0, t0) is a constant number.

From this, we see that the solution is given by,∫ t

t0

Q(y, τ)dτ +
∫ y

y0

P(γ, t0)dγ + µ(y0, t0) = C,

for some constant C. Plugging in t = t0, y(t0) = y0 gives,

µ(y0, t0) = C,

So we get the solution,∫ t

t0

Q(y, τ)dτ +
∫ y

y0

P(γ, t0)dγ = 0.

Consider the exact differential equation

(2t3 + 3y) + (3t + y− 1)y′ = 0.

Here Q(y, t) = 2t3 + 3y and P(y, t) =
3t + y− 1. It is easily verified that this
equation is exact. The solution gives,∫ t

t0
(2τ3 + 3y)dτ +

∫ y

y0
(3t0 + γ− 1)dγ = 0.

Integrating out gives,

t4

2
+ 3yt−

t4
0
2
− 3yt0 + 3t0y,

+
y2

2
− y− 3t0y0 +

y2
0

2
+ y0 = 0

↔ t4

2
+ 3yt−

t4
0
2
+

y2

2
− y− 3t0y0 +

y2
0

2
+ y0 = 0

The solution is therefore,

t4

2
+ 3yt +

y2

2
− y =

t4
0
2
+ 3t0y0 −

y2
0

2
− y0.
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A differential equation is called separable if it is of the form,

g(y)y′ + f (t) = 0.

for two function g and f . Setting P(y, t) = g(y) and Q(y, t) =

f (t) it is easily verified that these equations are exact differential
equations.34 34 Indeed, Pt = 0 = Qy.

Using the procedure set out above, we get the following solution,∫ t

t0

f (τ)dτ +
∫ y

y0

g(γ)dγ = 0,

↔F(t)− F(t0) + G(y)− G(y0) = 0,

↔G(y) = G(y0) + F(t)− F(t0).

where F and G are the integrands of f and g.
In practice separable differential equations are also ‘quickly’

solved in the following way:

1. First separate out all functions that depend on y on one side and
all functions that depend on t on the other side,

g(y)y′ = − f (t),

2. Next we integrate both sides of the equation with respect to t,∫ t

t0

g(y)y′(t)dt =
∫ t

t0

f (t)dt.

3. By setting y = y(t), we can use a change of variables, dy
dt = y′(t)

and y(t0) = y0, so: ∫ y(t)

y(t0)
g(y)dy =

∫ t

t0

f (t)dt,

⇐⇒ G(y(t))− G(y(t0)) = F(t)− F(t0).

Where G is a primitive of g(y) and F is a primitive of f .
Consider the separable differential
equation y′ = t

3y2 with initial condition

y(t0) = y0.

y′ =
t

3y2 ,

→3y2y′ = t,

→3
∫ t

t0
y2(t)y′(t)dt =

∫ t

t0
tdt,

→3
∫ y(t)

y(t0)
y2dy =

∫ t

t0
tdt,

→y(t)3 − y(t0)
3 =

t2

2
−

t2
0
2

,

→y(t)3 = t2/2− t2
0/2 + y(t0)

3,

→y =
(

t2/2− t2
0/2 + y3

0

)1/3
.

The Cauchy solution with initial values
t0 = 0 and y(t0) = 3 gives,

y(t) =
(

t3/2 + 27
)1/3

.

Separable differential equations are often ‘quickly’ solved as
follows:

y′ =
t

3y2 ,

→3
∫

y2dy =
∫

tdt + C,

→y3 = t2/2 + C, . . .

where C is a constant of integration. It is certainly faster, but can hide
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problems of existence of the
∫

involved. For example,

y′ = − y
2t

,

→1
y

dy = − 1
2t

dt,

→
∫ 1

y
dy = −1

2

∫ dt
t
+ C,

→?

If t0 > 0 and y0 > 0. Then we have ln(y)− ln(y0) = −1/2(ln(t)−
ln(t0)) which gives y = y0

√
t0/t. If t0 > 0 and y0 < 0, we have

ln(−y)− ln(−y0) = −1/2(ln(t)− ln(t0)) so y = y0
√

t0/t. The other
cases are treated similarly, however the solutions are in separate
regions of the solution space. Notice that y(t) = 0. is a solution if
y0 = 0.

For an economic inspired example, let
w(t) ∈ R++ be the wealth held in an
investment account at time t and let r(t)
the (instantaneous) interest rate with
interest continuously compounded and
initial value w(t0) = w0. Then,

w′ = r(t)w.

This is a separable equation. Separating
the variables and integrating gives,∫ t

t0

w′(s)
w(s)

ds =
∫ t

t0
r(s)ds,

∫ w(t)

w(t0)

1
k

dk =
∫ t

t0
r(s)ds,

[ln(k)]w(t)
w(t0)

=
∫ t

t0
r(s)ds.

As such, ln(w(t)) = R(t) + ln(w(t0))

where R(t) =
∫ t

t0
r(s)ds.

w(t) = eR(t)+ln(w0) = w0eR(t),

= w0e
∫ t

t0
r(s)ds.

A function f (y, t) is homogeneous of degree n if for all α > 0,
f (αy, αt) = αn f (y, t). If for the differential equation

P(y, t)y′ + Q(y, t)dt = 0,

both functions, P and Q are homogeneous of the same degree, we
call it a homogeneous differential equation. This family of differen-
tial equations can be solved in the following way,

1. rewrite the equation as follows,

P(y, t)y′ + Q(y, t) = 0,

→tnP(y/t, 1)y′ + tnQ(y/t, 1) = 0,

→P(y/t, 1)y′ + Q(y/t, 1) = 0.

2. Introduce the change of variables u(t) = y(t)/t, then,

y = ut,

→y′ = u + u′t.

Substituting this in the differential equation gives,

P(u, 1)(u + u′t) + Q(u, 1) = 0,

→P(u, 1)u′t = −[Q(u, 1) + P(u, 1)u],

→− P(u, 1)
Q(u, 1) + P(u, 1)u

u′ − 1
t
= 0.

3. This is a separable equation that can be solved in the usual way.
Finally, we substitute u(t) = y(t)/t into the solution for u in order
to obtain a solution for y(t).

As an example, let

y′ = − t2 + y2

2ty
,

→y′ = − 1 + (y/t)2

2(y/t)
.

Let u = y/t, then,

u′t + u = − 1 + u2

2u
,

⇐⇒ u′ = − 1
t

1 + 3u2

2u
,

→
∫ u

u0

2u
1 + 3u2 du = −

∫ t

t0

1
t

dt.

For the left hand side, consider a
change of variables v = 1 + 3u2 then
dv = 6udu so∫ 1+3u2

1+3u2
0

1
3v

dv = −
∫ t

t0

1
t

dt.

Then

1
3

ln

(
1 + 3u2

1 + 3u2
0

)
= − ln(t) + ln(t0),

→u2 =
1
3

[
(t0/t)3(1 + 3u2

0)− 1
]

,

→y2 =
t2

3

[
(t0/t)3(1 + 3u2

0)− 1
]

.
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In many cases, the differential equation P(y, t)dy + Q(y, t)dt = 0 is
neither exact nor homogeneous. In such settings, it might still be pos-
sible to find what we call an integrating factor. An integrating factor
is a function z(y, t) of y and t such that the differential equation

z(y, t)P(y, t)dy + z(y, t)Q(y, t)dt = z(y, t)[P(y, t)dy + Q(y, t)dt] = 0,

becomes an exact equation.
Young’s theorem tells us that z is an integrating factor iff

d
dt

zP =
d

dy
zQ,

↔ztP + zPt = zyQ + zQy,

↔ztP− zyQ + z(Pt −Qy) = 0.

In general this is not an easy problem to solve (given that it is also
a differential equation). However, there are two special cases of
particular interest. A first case is when z is independent of y. Then,
zy = 0 so,

ztP = z(Qy − Pt),

1
z

zt =
Qy − Pt

P
.

The left hand side is independent of y so this can only be a solution
is the right hand side is also independent of y, i.e. there should be a
function G such that,

Qy − Pt

P
= G(t).

In this case, we have that 1
z zt = G(t), so integrating both sides

gives,35 35 Here we omit the integrating constant
ln(z0) as this does not change the fact
that z(t) remains an integrating factor.ln(z) =

∫ t

t0

G(s)ds,

→z(t) = e
∫ t

t0
G(s)ds.

The second special case is when z is independent of t. Then, zt = 0
so

zyQ = z(Pt −Qy),
zy

z
=

Pt −Qy

Q
= H(y).

Integrating out gives

ln(z) =
∫ y

y0

H(s)ds,

→ z(y) = e
∫ y

y0
H(s)ds

The equation

(t2 + y2 + t) + tyy′ = 0,

is not exact. However,

Qy − Pt

P
= 1/t = G(t),

so z(t) = e
∫

1/tdt is an integrating factor.
However, e

∫ 1
t dt is equal to t for t > 0

and equal to −t if t < 0. So,

t[(t2 + y2 + t) + tyy′] = 0,

(t3 + y2t + t2) + t2yy′ = 0.

This equation is exact. We have∫ t

t0
(τ3 + y2τ + τ2)dτ +

∫ y

y0
(t2

0γ)dγ = 0,

↔ t4

4
+

y2t2

2
+

t3

3
=

t4
0
4
+

t3
0
3
+ t2

0
y2

0
2
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A first order differential equation is linear if it is of the form,

y′ + u(t)y = w(t),

where u(t) and w(t) may be functions of t.36 Let us first focus on the 36 Here are some examples of first order
linear equations:

y′ + y = t,

y′ + 2ty = 4t,

(t2 + 1)y′ + ety = t ln t.

simplest case where u(t) and w(t) are constants,

y′ + uy = w.

Here P(y, t) = 1 and Q(y, t) = (uy − w). Then (Qy − Pt)/P = u
so we have that z(t) = eut is an integrating factor. Multiplying the
differential equation by eut gives,

y′eut + uyeut − weut = 0.

The solution is then given by,∫ t

t0

(uy− w)euτdτ +
∫ y

y0

eut0 dγ = 0,

↔(y− w/u)eut − (y− w/u)eut0 + (y− y0)eut0 = 0,

↔yeut =
w
u

eut − w
u

eut0 + y0eut0 ,

↔y =
w
u
+ (y0 −

w
u
)e−u(t−t0)

If u ≥ 0 and t becomes very big, then y will be close to w/u.
Another way to solve the problem is by starting again from the

equation,

y′eut + uyeut − weut = 0.

Now write y = y(t) and notice that the left hand side is the (total)
derivative of (euty(t)) with respect to t, so

d
dt
[
euty(t)

]
= weut.

Then integrating both sides with respect to t gives,

euty(t)− eut0 y(t0) =
∫ t

t0

weutdt =
w
u

eut − w
u

eut0 .

where C is a constant of integration. As such,

y(t) =
w
u
+ (y(t0)−

w
u
)e−u(t−t0),

Take the equation

y′ + 2y = 8.

The integrating factor is e2t. Then the
solution is given by

y(t) = 4 + (y0 − 4)e−2(t−t0).

For a more economic inspired example,
consider a capital stock where k′ =
2− 0.1k. The integrating factor is e0.1t.
The solution is,

k(t) = 20 + (k0 − 20)e−0.1(t−t0).Let us now allow the right hand side w(t) to depend on t. We can
use the same factor z(t) = eut as an integrating factor to obtain the
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solution ∫ t

t0

(uy− w(τ))euτdτ +
∫ y

y0

eut0 dγ = 0,

↔y(eut − eut0)−
∫ t

t0

w(τ)euτdτ + (y− y0)eut0 = 0,

↔yeut =
∫ t

t0

w(τ)euτdτ + y0eut0 ,

↔y =
∫ t

t0

w(τ)e−u(t−τ)dτ + y0e−u(t−t0).

Let us now consider the general case where both u(t) and w(t) are
functions of t. The integrating factor is now equal to,

z(τ) = e
∫ τ

t0
u(s)ds,

Then ∫ t

t0

z(τ)u(τ)ydτ −
∫ t

t0

z(τ)w(τ)dτ +
∫ y

y0

z(t0)dγ = 0,

↔y
∫ t

t0

z(τ)u(τ)dτ −
∫ t

t0

z(τ)w(τ)dτ + (y− y0) = 0.

Now, ∫ t

t0

z(τ)u(τ)dτ =
∫ t

t0

e
∫ τ

t0
u(s)dsu(τ)dτ,

= z(t)− z(t0) = z(t)− 1.

As such,

yz(t) =
∫ t

t0

z(τ)w(τ)dτ + y0 = 0,

↔y = e−
∫ t

t0
u(s)ds

∫ t

t0

e
∫ τ

t0
u(s)dsw(τ)dτ + e

∫ t
t0

u(s)dsy0,

↔y =
∫ t

t0

e−
∫ t

τ u(s)dsw(τ)dτ + e
∫ t

t0
u(s)dsy0,

Assume that the amount of saving
in an account at time t is gvien by
w(t). Suppose there are deposits and
withdrawals at the rates y(t) and c(t).
If there is continuous compounding of
interest at rate r(t) then the wealth at
time t follows a differential equation,

w′(t) = r(t)w(t) + y(t)− c(t).

This is a first order linear differential
equation. The solution is given by,

w(t) = w0e
∫ t

0 r(s)ds,

+ e
∫ t

0 r(s)ds
∫ t

0
[y(k)− c(k)]e

∫ k
0 −r(s)dsdk,

= w0e
∫ t

0 r(s)ds +
∫ t

0
[y(k)− c(k)]e

∫ t
k r(s)dsdk,

The first term gives the added value to
w(t) of the initial endowment w(0). For
the second term, notice that at point
k, an amount y(k)− c(k) is added to
the savings. In time t the worth of this

savings is equal to (y(k)− c(k))e
∫ t

k r(s)ds.

As a final case of a first order differential equation, we consider
Bernoulli equations. These have the form,

y′ + u(t)y = w(t)ym.

If m = 0 this reduces to a linear equation. If m = 1 this equation is
separable. Observe that y(t) = 0 is a solution, so let y 6= 0 and divide
both sides by ym to get,

y′

ym + u(t)y1−m = w(t).



dynamic programming 33

Now, we introduce a change of variables. Let z = y1−m. Then z′ =
(1−m) y′

ym so,

z′

1−m
+ u(t)z = w(t),

z′ + (1−m)u(t)z = (1−m)w(t).

This is a linear differential equation. Consider the differential equation

y′ + ty = 3ty2.

Observe that y(t) = 0 is a solution. If
y(t) 6= 0, divide by y2 and let z = y−1

then z′ = −y−2y′. So,

− z′ + tz = 3t,

z′ − tz = −3t.

The latter equation is linear but also
separable.

z′

z− 3
= t.

The solution is ln(z− 3)− ln(z0 − 3) =
t2/2− t2

0/2 (provided z > 3). If z < 3
we have the solution − ln(3 − z) +
ln(3− z0) = t2/2− t2

0/2. In both cases,

z− 3 = (z0 − 3)(et2/2−t2
0/2.

Then

y =
1

3 + (z0 − 3)et2/2−t2
0/2

.

For a more elaborate example, consider the capital stock k
(with initial stock k0) that produces an output y according to the
production function y = kα. A fraction s of the output is reinvested
and capital depreciates at a constant rate equal to δ. This gives the
dynamic equation,

k′ = skα − δk,

↔k′k−α + δk1−α = s.

Introduce the variable u = k1−α with u′ = (1− α)k−αk′. Substituting
gives,

u′

1− α
+ δu = s,

↔u′ + (1− α)δu = s(1− α).

This is a linear differential equation with solution,

u =
s
δ
+ (u0 − s/δ)e−(1−α)δ(t−t0).

Setting u0 = k1−α
0 , u = k1−α and t0 = 0 gives,

k1−α =
s
δ
+ (k1−α

0 − s/δ)e−(1−α)δt).

→k(t) =
(

k1−α
0 e−(1−α)δt +

s
δ

(
1− e−(1−α)δt

))1/(1−α)

Also,

y(t) =
(

y(1−α)/α
0 e−(1−α)δt +

s
δ

(
1− e−(1−α)δt

))α/(1−α)
.

Captial (and output) is a weighted average of initial and steady state
and initial values. The speed of convergence is governed by the factor
(1− α)δ.

Qualitative theory and stability
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It is of course very convenient when economic models have differ-
ential equations that can be solved explicitly. Unfortunately, most
types of differential equations do not have this nice property. If so,
the nature of their solution has to be investigated in some other way.

Many equations in economic models have the following form,

y′ = F(y).

This is called an autonomous equation as t does not explicitly appear
in the function F. In other words, the change in y, i.e. y′ depends on
the level of y but not on the exact time. To examine the properties of
the solution to this equation, it is useful to study its phase diagram.
This is obtained by drawing the curve F(y). For all values of y for
which F(y) > 0, the value of y will be increasing (as y′ > 0) for all
values of y for which F(y) < 0, the value of y will be decreasing (as
y′ < 0).

At a point y = a where F(a) = 0, the value of y will not change.
Such point is called a stationary state. If the system is in such station-
ary state, it will not move from this point.

Figure 6: A dynamic model with one
stationary state.

Figure 7 shows a setting with two stationary states (a and b).
These stationary states are quite different. In particular, if we start
very close to a then y(t) will approach a as time goes by. On the other
hand, if x starts close to b, it will move further away from b as time
goes by. We call the stationary state a a stable state and b an unstable
state.

Figure 7: A dynamic model with two
stationary state.

So, if F(a) = 0 and F′(a) < 0 then a is a locally asymptotically sta-
ble state. If F(a) = 0 and F′(a) > 0 then a is a locally asymptotically
unstable state. What happens if F(a) = 0 and F′(a) = 0. Then both
can happen (there are four separate cases here, can you draw them?).

Example: Let y′ + ay = b. Then this is an
autonomous system with F(y) = b− ay.
There is one stationary state when
y = b/a. Also F′(b/a) = −a so this
stationary state is stable if a > 0 and is
unstable if a < 0.

As an illustration we take the Solow-Swan model, which is a
simple necoclassical growth model that involves a constant returns
to scale production function Y = F(K, L) that determines national
output Y as a function of capital K and labour L (i.e. F(tK, tL) =

tF(K, L). It is assumed that L grows at a constant proportional rate
λ > 0 (i.e. L′ = λL). Also, a constant fraction of output Y is devoted
to net investment K′ = sY. The model usually divides all variables by
L so y = Y/L, k = K/L giving,

Y = F(K, L) = LF(K/L, 1),

→y = f (k).

Also,

k′

k
=

K′

K
− L′

L
= s

Y
K
− λ = s

y
k
− λ,

→k′ = s f (k)− λk.
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Figure 8: Dynamics in the Solow-Swan
model.

Without specifiying f , this equation has no explicit solution. Let
us assume that f (0) = 0, f ′(k) > 0 and f ′′(k) < 0. Provided that
s f ′(0) > λ and s f ′(k) < λ for large k we can plot the phase diagram
as a hump shaped function. There is a unique equilibrium state with
k∗ > 0 determined by s f (k∗) = λk∗. Moreover, the stationary state
will be stable.

Second order differential equations

Above, we only considered first order differential equations. How-
ever, many economic models are based on differential equations in
which second or higher order derivatives appear.

A typical second order differential equation takes the form

y′′ = F(t, y, y′).

Where y′′ = ∂2y(t)
∂t2 . A solution of this differential equation is a twice

differentiable function that satisfies the equation. Let y′′ = k with k a constant. Then
integrating both sides gives y′ = kt + C
where C is a constant of integration.
Again integrating both sides gives
y(t) = k

2 t2 + Ct + D.

A special case which is worth mentioning is when F does not
depend on y. In this case we have y′′ = F(t, y′). Introducing a new
variable u = y′ gives u′ = F(t, u) which is a first order differential
equation. As such, we will focus on settings where F depends on y.
In particular, we will mainly focus on second order linear differen-
tial equations with constant coefficients,

y′′ + ay′ + y = f (t).

where f (t) is a continuous functions of t and a, b ∈ R.
In contrast to first order linear differential equations, there is no

explicit general solution to this problem. However, something useful
can be said about the structure of the general solution. Let us start by
looking at the homogeneous equation,37 37 This is the equation obtained by

setting f (t) = 0.

y′′ + ay′ + by = 0,

that is obtained by replacing f (t) by zero. Now, how does solving
this homogeneous differential equation help us in solving the non-
homogeneous equation y′′ + ay′ + by = f (t) for f (t) 6= 0.

Well, assume that we know (or find) one particular solution y∗(t)
of the non-homogeneous equation, i.e. y∗(t) satisfies

y′′∗ + ay′∗ + by∗ = f (t).

Then for any function y(t) that also solves the differential equation,
we see that the difference y(t)− y∗(t) = u(t) solves the homogeneous
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differential equation, i.e.,

u′′ + au′ + bu = 0.

As such, any solution y(t) of the non-homogeneous differential
equation can be written as a general solution of the homogeneous
equation u(t) and a particular solution of the original differential
equation y∗(t).

y(t) = y∗(t) + u(t).

Given this, we can split up the problem of solving the second
order linear differential equation in two parts.

1. Find a general solution of the homogeneous equation.

2. Find a particular solution of the differential equation.

3. Write the general solution of the differential equation as the
sum of the particular solution and the general solution of the
homogeneous equation.

In order to find the general solution to the homogeneous differential
equation, we first make a short digression concerning the dimension
of the solution space of this problem.

A first thing to notice about the solutions of the second order
homogeneous linear differential equation is that it forms a vector
space.38 As such, for any two solutions y1, y2 of the homogeneous 38 A vector space is a set which is closed

by the operations of addition and scalar
multiplication. In particular, assume
that y solves the differential equation.

y′′ + ay′ + by = 0,

Then for all scalars α, we have that the
function αy also solves the differential
equation and if y1 and y2 both solve the
differential equation, then y1 + y2 is also
a solution.

differential equation, the function αy1 + βy2 also solve the differential
equation.

Lemma 1. Assume that the homogeneous differential equation

y′′ + ay′ + by = 0,

has a solution on [t0, t1] with y(t0) = y′(t0) = 0, and a, b ∈ R. Then
y : [t0, t1]→ R is the constant function y(t) = 0 for all t ∈ [t0, t1].

Proof. Consider the function σ : [t0, t1]→ R with,

σ(t) = (y′(t))2 + (y(t))2.

Observe that σ(t) ≥ 0 for all t and that σ(t) = 0 if and only if
y(t) = y′(t) = 0. Additionally, σ(t0) = 0 by assumption. Also σ is C1

and taking derivatives gives,

σ′ = 2y′y′′ + 2yy′ = 2y′(−ay′ − by) + 2yy′,

= −2a(y′)2 + 2(1− b)yy′,

≤ |2a|(y′)2 + 2|(1− b)||yy′|,
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Now, for any two numbers z, w,

0 ≤ (|z| − |w|)2 = z2 + w2 − 2|z||w|,
↔ 2|z||w| ≤ z2 + w2.

As such,

σ′ ≤ |2a|(y′)2 + |(1− b)|(y2 + y′2) ≤ A(y′2 + y2) = Aσ.

where A = |2a|+ |1− b|. Next, observe that,

d
dt
[e−Atσ(t)] = e−Atσ′(t)− Ae−Atσ(t) = e−At(σ′(t)− Aσ(t)) ≤ 0.

for all t ∈ [t0, t1]. Now, given that σ(t0) = 0 and the derivative is
nowhere strictly, positive, we can integrate the left hand side shows
that e−Atσ(t) ≤ 0.

This means that σ(t) ≤ 0 for all t ∈ [t0, t1]. Together with the fact
that σ(t) ≥ 0 for all t, we obtain that σ(t) = 0 for all t ∈ [t0, t1]. From
this, it follows that y′(t) = y(t) = 0 for all t ∈ [t0, t1], so y is the
constant function equal to zero.

The following result shows that a solution for the homogeneous
equation only depends on the initial conditions.

Lemma 2. For every values α, β, there is at most one solution y to the
differential equation,

y′′ + ay′ + by = 0,

with y(t0) = α and y′(t0) = β.

Proof. Assume that there are two solutions y1, y2 with y1(t0) =

y2(t0) = α and y′1(t0) = y′2(t0) = β. Then g(t) = y1(t) − y2(t) is
also a solution to the differential equation and it satisfies the initial
conditions g(t0) = 0 = g′(t0). By the previous lemma, g is the zero
function on [t0, t1]. As such, we have that for all t ∈ [t0, t1],

0 = g(t) = y1(t)− y2(t),

which shows that y1 coincides with y2 on the entire interval.

The important result shows that any solution to the homogeneous
differential equation is the linear combination of two non-zero, non
linear independent solutions.39 39 In other words, the solution space to

the homogeneous differential equation
is of dimension two.Theorem 16. Let y1, y2 : [t0, t1]→ R be two linearly independent non-zero

solutions to the homogeneous second order differential equation,

y′′ + ay′ + by = 0,

i.e. there is no α ∈ R such that y1 = αy2. Then all solutions to the linear
homogeneous equation can be written as αy1 + βy2 for some α, β ∈ R.
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Proof. Let y be a solution to the homogeneous differential equation.
Let us first show that there are α, β such that y(t0) = αy1(t0) + βy2(t0)

and y′(t0) = αy′1(t0) + βy′2(t0).
This is the case whenever,

α =
yy′2 − y′y2

y1y′2 − y2y′1

∣∣∣∣
t0

,

β =
y′y1 − yy′1

y1y′2 − y2y′1

∣∣∣∣
t0

.

These solutions exist if and only if the denominator y1(t0)y′2(t0) −
y2(t0)y′1(t0) is not zero.40 Given that the solutions are not zero, i.e. 40 This is the determinant of the matrix[

y1(t0) y2(t0)
y′1(t0) y′2(t0)

]
It is also known as the Wronskian.

not both y1, y′1 = 0 or y2, y′2 = 0 we have that the denominator is
zero if and only if y1(a) = ay2(a) and y′1(a) = ay′2(a) for some fixed
number a. But then, the function g = y1 − ay2 has g(t0) = g′(t0) = 0
and therefore g is the zero function. This means that y1(t) = ay2(t)
for all t ∈ [t0, t1] contradicting the assumption that the solutions were
not proportional.

So we know that values α, β exist. Then the two solutions y and
g = αy1 + βy2 satisfy the initial conditions y(t0) = g(t0) and y′(t0) =

g′(t0) so they must be (by the previous lemma) identical.

Above, we saw that in order to find the general solution of a homo-
geneous second order linear differential equation, we need to find
two linearly independent and non-zero solutions to the homogeneous
differential equation. For linear differential equations of order 1, we
found that functions of the form ert worked quite well as integrating
factor. So let us try a function of the form y(t) = ert. Then y′ = rert

and y′′ = r2ert. Substituting into the linear differential equation gives,

r2ert + arert + bert = 0,

→ert[r2 + ar + b] = 0,

→r2 + ar + b = 0.

This is quadratic equation is called the characteristic equation of
the homogeneous differential equation. The roots of this quadratic
equation are given by,41 41 The roots are the points for which

the equation is equal to zero. For
a quadratic equation of the form
a1x2 + a2x + a3, there are two (possibly
complex) roots given by,

x1 =
−a2 +

√
a2

2 − 4a1a3

2
,

x2 =
−a2 −

√
a2

2 − 4a1a3

2
.

The numbers a2
2 − 4a1a3 is called the

discriminant.

r1 =
−a +

√
a2 − 4b

2
, r2 =

−a−
√

a2 − 4b
2

.

These roots are real if and only if the discriminant a2 − 4b ≥ 0, if
a2 − 4b = 0 the two roots are equal and if a2 − 4b < 0 the roots are
complex numbers. Let us take each case in turn.

• If a2 − 4b > 0 the two roots are real and distinct, say r1 and r2.
This gives two linearly independent solutions y1(t) = er1t and
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y2(t) = er2 t. Given that any solution is a linear combination of two
linearly independent solution, it follows that the general solution
of the homogeneous differential equation can be written as,

y(t) = Aer1t + Ber2t,

where A, B ∈ R.

• If a2 − 4b = 0 then r = −a/2 is a double root and y1(t) = ert is
one solution of the differential equation. We still need to find a
second solution which is linear independent of this one. We claim
that y2(t) = tert is also a solution. We have that y′2 = ert + rtert and
y′′2 = rert + rert + r2tert so,

2rert + r2tert + aert + artert + btert = ert
[
2r + r2t + a + art + bt

]
,

= ert
[
(2r + a) + (r2 + ar + b)t

]
= 0.

the first is zero as r = −a/2 the second term is zero as r solves
the characteristic function. This shows that the general solution of
the homogeneous differential equation can be written as a linear
combination of ert and tert,

y(t) = Aert + Btert.

• If a2 − 4b < 0 the two roots are complex numbers. Let r = −a/2

be the real part of the roots and let θ =

√
|a2−4b|

2 be the imaginary
part. Then the roots are given by r1 = r + iθ and r2 = r− iθ where
i2 = −1 is the imaginary number. The solutions to the differential
equations are given by,

y1(t) = ert+iθt = erteiθ y2(t) = ert−iθt = erte−iθ .

Now, eiθt = cos(θt) + i sin(θt) and e−iθt = cos(θt)− i sin(θt).42 As 42 The complex number eiθ is the
number on the unit circle with angle θ.
As such, its coordinates are cos θ and
sin θ.

such, we get the ‘complex valued’ solutions,

y1(t) = ert(cos(θt) + i sin(θt)),

y2(t) = ert(cos(θt)− i sin(θt)),

which will both solve the homogeneous equation and they are
linearly independent. However, we would like our solutions to
be real valued. Given that any (complex) linear combination of
the two solutions will also solve the equation, we can consider the
linear combinations (y1(t) + y2(t))/2 = ert cos(θt) and (y1(t)−
y2(t))/(2i) = ert sin(θt).43 These two equations are also linearly 43 We have i2 = −1, so 1/i = −i.

independent and they solve the differential equation. As such, a
general solution is given by,

y(t) = ert(A cos(θt) + B sin(θt)).
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This covers all cases, so we can find a general solution for all second
order homogeneous linear differential equations. Let’s solve y′′ − 3y = 0. The charac-

teristic equation is r2 − 3 = 0 which
has roots r1 = −

√
3 and r2 =

√
3. The

general solution is

y(t) = Ae−
√

3t + Be
√

3t.

As a second example, let us y′′ − 4y′ +
4y = 0. The characteristic equation is
r2 − 4r + 4 which has roots r1 = r2 = 2.
As such the solution is,

y(t) = Ae2t + Bte2t.

For an example with complex roots,
consider y′′ − 6y′ + 13y = 0. The
characteristic equation is r2 − 6r + 13
which has roots r1 = 3 + i2 and
r2 = 3− i2. The solution is,

y(t) = e3t(A sin 2t + B cos 2t).

Nonhomogeneous equations

Now, consider the non-homogeneous equation with constant
coefficients,

y′′ + ay′ + by = f (t).

where f (t) is an arbitrary function. The general solution is given by,

y(t) = Ay1(t) + By2(t) + y∗(t).

where y1(t), y2(t) solve the homogeneous equation and y∗(t) is a
particular solution to the nonhomogeneous equation. How do we
find a solution y∗(t).

• If f (t) = d is a constant, we check wheter there is a particular
solution y∗(t) = c, also a constant. Indeed, this gives

bc = d,

or c = d/b. As such, a general solution is y(t) = Ay1(t) + By2(t) +
d/b.

• If f (t) is a polynomial of degree n, then a reasonable guess is
that y∗(t) can also be a polynomial of degree n, y∗(t) = Antn +

An−1tn−1 + . . .+ A0. The undertermined coefficients An, An−1, . . . , A0

are determined by the differential equation by equating the powers
of t.

• If f (t) is of the form Deαt for some constant D, it is good to try a
function of the form y∗(t) = Eeαt.

In general is a good idea to match the functional form of f (t) as close
as possible. There exist other methods to find particular solutions,
namely the method of undetermined coefficients. An explanation
of this method can be found in any good handbook on differential
equations.

Let’s solve y′′ − 4y′ + 4y = t2 + 2.
The right hand side is a polynomial of
degree 2, so set y∗(t) = At2 + Bt + C.
We have y′∗ = 2At + B and y′′∗ = 2A, so

2A− 4(2At + B) + 4(At2 + Bt + C) = t2 + 2,

4At2 + (8A− 4B)t + (2A− 4B + 4C) = t2 + 2.

As such, equating powers gives 4A = 1
or A = 1/4, 8A − 4B = 2− 4B = 0
or B = 1/2 and (2A − 4B + 4C) =
1/2− 2 + 4C = 2 giving C = 7/8. So,

y∗(t) = t2/4 + t/2 + 7/8.
For a second order nonhomogeneous differential equation

y′′ + ay′ + by = f (t),

we obtain the general solution y(t) = Ay1(t) + By2(t) + y∗(t). where
Ay1(t) + By2(t) is a general solution of the homogeneous equation
and y∗(t) is a particular solution of the non-homogeneous equation.
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The differential equation is globally asymptotically stable if every
solution Ay1(t) + By2(t) of the homogeneous equation tends to zero
as t → ∞.44 A necessary and sufficient condition for this is that 44 For all values of A and B

y1(t)→ 0 and y2(t)→ 0. as t→ ∞. This will be the case if both roots
of the characteristic equation r2 + ar + b = 0 have negative real parts.

Now these two roots satisfy r1r2 = b and r1 + r2 = −a. A necessary
and sufficient condition for asymptotic stability is therefore that
a, b > 0.45 45 The roots r1 and r2 are strictly below

zero if and only if b > 0 and a > 0. To
see this, observe that b > 0 and a > 0
are necessary if r1, r2 < 0. Now assume
that a, b > 0. Then either r1, r2 > 0 or
r1, r2 < 0 as their product is strictly
larger than zero. Also, one of the two
must be strictly negative as their sum
is strictly negative. Conclude that
r1, r2 < 0.

Systems of linear differential equations

So far we have considered finding one unknown function y(t)
to satisfy a single differential equation. Many dynamic economic
models involve several unknown functions that satisfy a number of
simultaneous differential equations. We will mainly focus on the case
where there are two unknowns and two equations

x′ = f (t, x, y),

y′ = g(t, x, y).

In economic models that lead to systems of this type, the solutions
x(t) and y(t) are called state variables. These variables characterize
some economic system at a certain point in time. Usually, the start of
the system (x(t0), y(t0)) is known and the future development is then
uniquely determined by the system of differential equations. Systems
of this type may exhibit very complicated behaviour.

In special cases the system consists of linear equations,

x′ = a11x + a12y + b1(t),

y′ = a21x + a22y + b2(t).

were all ai,j are real valued numbers. Assume a12 6= 0.46 Differentiat- 46 Otherwise we could first solve x(t)
and then substitute in the second to
solve y(t).

ing the first equation gives,

x′′ = a11x′ + a12y′ + b′1(t),

= a11x′ + a12a21x + a12a22y + b′1(t) + a12b2(t),

= a11x′ + a12a21x + a22(x′ − a11x− b1(t)) + b′1(t) + a12b2(t).

So,

x′′ − (a11 + a22)x + (a11a22 − a12a21)x = a12b2(t)− a22b1(t) + b′1(t),

which is a linear second order differential equation.47 We already 47 Observe that the first coefficient is the
trace of the matrix

A =

[
a1,1 a1,2
a2,1 a2,2

]
.

The second coefficient is the determi-
nant of the matrix A.
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know how to solve this for x(t). The solution for y(t) is then obtained
by substituting the solution of x(t) into the second equation.

However, there is another (sometimes easier) way to solve the
system. For simplicity, consider the homogeneous system,

x′ = a11x + a12y,

y′ = a12x + a22y.

Let us see if a choice x = ceλt, y = deλt can give a solution. We have,

cλeλt = a11ceλt + a12deλt,

dλeλt = a12ceλt + a22deλt.

Deleting common coefficients eλt gives the conditions,[
a11 a12

a12 a22

] [
c
d

]
= λ

[
c
d

]
.

This shows that λ is an eigenvector of the matrix48 48 For a square matrix A, λ is an eigen-
value if there exists a non-zero vector
x such that Ax = λx. In this case x is
called an eigenvector.A =

[
a11 a12

a21 a22

]
.

and
[
c d

]
is an eigenvector of this eigenvalue. The eigenvalues are a

solution to the characteristic equation,49 49 Indeed, Ax = λx implies [A− λI]x =
0. So the determinant of [A− λI] should
be zero. This gives the condition,

(a11 − λ)(a22 − λ)− a1,2a2,1 = 0.

As an example, consider the system,{
y′1 = 2y1 + y2,
y′2 = y1 + 2y2

The eigenvalues of the matrix A are
λ = 1 and λ = 3. This gives as
solutions is y1(t) = α1et + α2e3t and
y2(t) = β1et + β2e3t. Substituting in the
system gives,{

α1et + 3α2e3t = 2α1et + 2α2e3t + β1et + β2e3t,
β1et + 3β2e3t = α1et + α2e3t + 2β1et + 2β2e3t

Equating exponents gives,

α1 = 2α1 + β1,

3α2 = 2α2 + β2,

β1 = α1 + 2β1,

3β2 = α2 + 2β2.

This gives α1 = −β1 and α2 = β2, so

y1(t) = α1et + α2e3t,

y2(t) = −α1et + α2e3t.

(a11 − λ)(a22 − λ)− a12a21 = 0,

↔λ2 − (a11 + a22)λ + a11a22 − a12a21 = 0.

which is the same as the characteristic equation for the second order
differential equation derived above. If the two eigenvalues λ1, λ2 are
distinct and real with eigenvectors

[
α1 β1

]
and

[
α2 β2

]
, then the

general solution is,

x(t) = α1eλ1t + α2eλ2t,

y(t) = β1eλ1t + β2eλ2t.

Here, restrictions on the coefficients α1, α2, β1, β2 are obtained by
substituting the solutions into the differential equation.

If the two eigenvalues are identical with eigenvectors
[
α1 β1

]
and

[
α2 β2

]
, we obtain the solutions,

x(t) = (α1 + α2t)ert,

y(t) = (β1 + β2t)ert.

Again, restrictions on the values of the coefficients are obtained by
substituting into the differential equations.
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Finally, if the eigenvalues λ1 = r + iθ and λ2 = r− iθ are imaginary
with, the resulting solutions are of the form,

x(t) = ert(α1 sin θt + α2 cos θt),

y(t) = ert(β1 sin θt + β2 cos θt).

Consider the linear system with constant coefficients,

x′ = a11x + a12y + b1,

y′ = a12x + a22y + b2.

The stationary points or steady state of this system is determined by
the equations,

0 = a11x + a12y + b1,

0 = a12x + a22y + b2.

If the matrix of a coefficients has non-zero determinant, then this
system has a unique solution (x∗, y∗) which is a equilibrium point. In
general, the equilibrium point will be globally asymptotically stable if
every solution tends to the equilibrium point as t→ ∞.

This will be the case if,

a11 + a22 < 0,

a11a22 − a12a21 > 0.

In other words, the trace of the matrix is negative and the determi-
nant is positive50 We have the following qualitative features, 50 This is the same as requiring that

both eigenvalues have negative real
parts.1. If both eigenvalues have negative real parts then the equilibrium is

globally stable.

2. If both eigenvalues have positive real parts, then the equilibrium is
a source and all paths will move away from the equilibrium point.

3. If eigenvalues are real with opposite signs (say λ1 < 0 < λ2), then
the equilibrium is called a saddle point. In principle there will
only be one type of paths that will lead to the equilibrium (the one
where the coefficient with eλ2t is zero). All other starting points
will move away from the equilibrium. This kind of equilibrium is
encountered frequently in economics51 51 There is only one path towards the

steady state, the optimal one.
4. If the eigenvalues are purely imaginary, then the equilibrium is

called a centre. All paths ’circle’ around the equilibrium.

Let us go back to the nonlinear system, and assume that it is au-
tonomous52 52 The variable t does not occur indepen-

dently in the dynamic system.



dynamic programming 44

x′ = f (x, y),

y′ = g(x, y).

Assume that there is a unique point (xs, ys) where f (xs, ys) = 0 =

g(xs, ys). Then the system can be linearized around this stationary
point by taking Taylor expansions.

x′ ≈ f (xs, ys) + fx(xs, ys)(x− xs) + fy(xs, ys)(y− ys),

y′ ≈ g(xs, ys) + gx(xs, ys)(x− xs) + gy(xs, ys)(y− ys).

However, this reduces to,

x′ = fx(xs, ys)(x− xs) + fy(xs, ys)(y− ys),

y′ = gx(xs, ys)(x− xs) + gy(xs, ys)(y− ys).

Often such linearised system is analysed in order to say something
qualitatively of the equilibrium in a neighbourhood of the stationary
point. The equilibrium will be (locally) stable if fx + gy < 0 and
fxgy − fygx > 0.

Phase Plane analysis

Even when explicit solutions are unavailable, geometric argu-
ments can still shed some light on the structure of the solutions of
autonomous systems of differential equations. Consider the system,

x′ = f (x, y),

y′ = g(x, y).

A stable state (a, b) where f (a, b) = g(a, b) = 0 is usually determined
by the intersection of two curves f (x, y) = 0 and g(x, y) = 0 in the
x− y plane. These two paths are called the nullclines of the system.

A phase plane starts by drawing these nullclines. The two null-
clines divide the plane in several regions. For each region, depending
on where you are above or below or to the left or right of the null-
clines, you can determine the sign of x′ and y′.53 These directions can 53 The direction of x and y over time.

be indicated by arrows in the plane.
Let us illustrate this by an example. Consider the following non-

linear system:

k′ =
√

k− c,

c′ = c[16− 4k]

We can construct a diagram with k on the horizontal axis and c on
the vertical axis. Each point in the space represents the position of
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the system (k, c) at a given moment in time. If we want to see what
the position of the economy will be at the “next instant” we can
represent the dynamics with arrows that point in the direction of
motion. To construct the phase diagram, follow these steps:

1. Plot the locus of points for which k′ equals 0. This is given by the
equation c =

√
k.

2. Analyse the dynamics of k in each of the two regions generated by
the k′ = 0 locus

• for c <
√

k, k′ > 0, hence arrows point east

• for c >
√

k, k′ < 0, so arrow point west.

3. repeat the procedure for c′.

• the c′ = 0 locus is given by the equation k = 10, a vertical line

• for k > 4, we have that c′ < 0 so arrows point south

• for k < 4, we have that c′ > 0 so arrows point up.

4. combine the dynamics for k and c

• the steady state is the point at which the k′ = 0 and c′ = 0 loci
cross, a condition that corresponds to k = 4 and c =

√
4 = 2.

• the dynamics of the system (the arrows) determine the stability
of the system. In this case, we have a saddle point equilibrium.

Figure 9: Phase plane diagram

Exercises

Separable differential equations

1. 3y2y′ = t with y(0) = 2. (Sol: y(t) =
[
t2/2 + 8

]1/3)

2. y′ = y3/t3 with y(1) = 2 (Sol: y(t)2 = 4t2

4−3t2 ).

3. y′ = t3/y3 with y(1) = 2 (Sol: y(t)4 = t4 + 15).

4. (1 + t2)y′ + ty = 0 with y(1) = 2 (Sol: y = 2
√

2
(1+t2)

.).

Homogeneous differential equations

1. y′ = − t2+y2

2ty (Sol: t3
0 + 3y2

0t0 = t3 + 3ty2).

2. y′ = y
t + ey/t (Sol: y = −t ln(ln(v0/t))).
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Linear differential equations

1. y + 5y = 15 (Sol: y(t) = 3 + Ce−5t).

2. y′ = y + et (Sol: y(t) = tet + Cet).

3. y′ + t2y = 3t2 (Sol: y = 3− (3− y0)et3
0/3−t3/3.).

4. y′ + 6y = e−t with y(0) = 6/7 (Sol: y(t) = 23
35 e−6t + e−t

5 ).

Bernoulli differential equation

1. y′ + y/t = y3 (Sol: y(t)2 = 1
Ct2+2t ).

Exact differential equations

1. y2 + 2yty′ = 0 (Ans: y2t = C).

2. (y + 3t2) + (t + 2y)y′ = 0 (Ans: yt + t3 + y2 = C).

3. 3yt2 + 2(t3 + 1)y′ = 0 (this is not an exact equation, try t, y and y2

as integrating factors) (Ans: y2t3 + y2 = C)

Linear differential equations of order > 1

1. y′′ − 2y′ + y = 6tet (Ans: y(t) = Aet + Btet + t3et.

2. y′′ − 4y′ + 13y = 10 cos 2t + 25 sin 2t (Sol: y(t) = e2t(A sin 3t +
B cos 3t) + sin 2t + 2 cos 2t.).

3. y′′ − y = e3t (Sol: y(t) = Aet + Be−t + e3t/8).

4. y(3) − 3y′′ − 4y′ + 12y = e3t (Sol: y(t) = Ae3t + Be−2t + Ce2t +

(1/5)te3t.).

5. y(3) − y′′ + y′ − y = 2et (Sol: y(t) = Aet + B sin t + C cos t + tet).

Systems of differential equations

1.

{
x′ = x + 12y− 60,
y′ = −x− 6y + 36

(Sol: x(t) = −3Ae−3t + 4Be2t + 12; y(t) =

Ae−3t − Be2t + 4).

2.


x′ = 3x + y,
y′ = 3y,
z′ = 2z

(Sol: x(t) = Ae3t + Bte3t, y(t) = Be3t, z(t) = Ce2t.)
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Draw a phase diagram, find the equilibrium points and draw the direction of
motion of the following system:

•

{
x′ = y,
y′ = −2x− y

•

{
K′ = aK− bK2 − C,
C′ = w(a− 2bK)C

•

{
x′ = y,
y′ = x

•

{
x′ = x + y,
y′ = x− y

•

{
x′ = x(y− x/2− 2),
y′ = y(1− y/2x)





Intro to dynamic optimization

Static optimization problems require you to find the value of
one or several variables possibly subject to one or several equality or
inequality constraints that maximize a certain function.

Many economic processes, however, are by nature dynamic: “de-
cisions” made at some time t depend on those made before and will
influence those made after. Dynamic optimization requires to find the
path of one or several variables, eventually subject to constraints in
such a way to maximize or minimize a given functional. For exam-
ple, we could be interested in the optimal path between two points
in 2 dimensional space if each admissible path is associated with
some cost which is a function not only of the distance, but also of the
topography (the objective being to minimize total cost).

Basically, a dynamic optimization problem consists of

1. An initial and terminal point.

2. A set of admissible paths (from the initial to the terminal point).

3. A set of values (costs, profits, . . . ) associated to each admissible
path.

4. An objective (to be maximized or minimized).

However, there are several variations on this.
In the standard problem, both terminal time and terminal value

are given. In some cases, the terminal time is given but not the value
of the path at the terminal time. In some cases, the terminal time is
free but the value at the terminal time is fixed. In some cases, both
terminal time and terminal values are free but they have to satisfy
some restrictions.

Figure 10: Top: both initial and terminal
values are given. Second: terminal
time fixed but value is variable. Third:
terminal value fixed but time is variable.
Bottom both terminal time and value
are variable but restricted to lie on some
curve.

In all these situations, the planner has one more degree of freedom
than in the fixed terminal time-value case. We will see that an extra
condition will be required to be able to distinguish the optimal path
from the other admissible paths. Such conditions are known as
transversality conditions: how the optimal path crosses (transverses)
the terminal line or curve.
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A path with initial time t0 and final time t f can be described by a
function y : [t0, t f ] → R let T be the set of all admissible paths T . A
value function is then a mapping from T onto R.

V : T → R : y(t) 7→ V(y(t)).

An optimal path y∗(t) defined on the interval [t0, t f ] is a path which
maximizes (or minimizes) V[y(t)].54 54 V[y(t)] is the total value of y(t).

In a discrete framework, the latter total value is quite naturally the
sum of the values associated to each period. In the continuous time
framework, we assume that V[y(t)] takes the form of an integral from
t0 to t f ,55 55 An infinite sum of infinitesimal

values.

V[y(t)] =
∫ t f

t0

(value of an infinitsemal arc)dt =
∫ t f

t0

F(t, y(t), y′(t))dt.

Here, as usual, t is time, y(t) is the state at time t and y′(t) is the
direction in which the path proceeds.56 56 Other possible forms are V[y(t)] =

ψ(t f , y(t f )). Here the criterion does not
depend on the intermediary positions.
Writing z(t) = ψ(t, y(t)) with z(t0) = 0,

we obtain ψ(t f , y(t f )) =
∫ t f

t0
z′(t)dt.

Also, we can consider the problem V[y(t)] =
∫ T

0 F(t, y(t), ẏ(t))dt +
G(t f , y(t f )) which can be brought back to the standard problem.

There are various approaches to solve dynamic optimization
problems. Which solution method is most appropriate often depends
on the problem under consideration.

1. Calculus of Variation57 The fundamental problem of the calculus 57 < 17th century, Newton (1687),
Bernoulli (Jean and Jacques) (1696,
1697), Lagrange (1760), Legendre
(1786), Jacobi (1837), Weierstrass (1870).
The original problem that started
the development of this method is
the following: which type of surface
of revolution would encounter the
least resistance when moving through
some resisting medium (= surface of
revolution with the minimum area).

of variations is the following

max V[y(t)] =
∫ t f

t0

F[t, y(t), y′(t)]dt with y(t0) = y0, y(t f ) = y f .

The implicit assumption here is that all functions are at least C1.

2. Optimal control Optimal control problems are a generalization
of calculus of variation problems. Optimal control problems have
three types of variables: t, which denotes time, y(t), which is the
state variable and u(t), which is a control variable. In order to
unambiguously determine the state variable path y(t), an equation
linking y(t) and u(t) is necessary. This is the so-called equation of
motion or state equation,

y′(t) = f (t, y(t), u(t)).

This equation describes how, at each point in time, the control
variable u(t) drives the state variable y(t). As such, the optimal
path for u(t) determines the optimal path for y(t). The classical
problem is

maxV[u(t)] =
∫ t f

t0

F[t, y(t), u(t)]dt

subject to y′(t) = f (t, y(t), u(t)); y(t0) = y0, y(t f ) = y f .
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Optimal control problems are more general than calculus of vari-
ations problems.58 Optimal control problems are solved by the 58 Indeed, setting y′(t) = u(t) in the

turns the optimal control problem into
a calculus of variations problem.

Maximum principle.59 It allows further restrictions on u(t) such as

59 Potryagin, 1962.u(t) ∈ U with U convex bounded and closed.

3. Dynamic programming60 This is another approach of optimal 60 Bellman, (1957).

control embedding the problem into a larger class of problems.
It focuses on the optimal value function V[y∗(t)], rather than on
u∗(t) and y∗(t). In the continuous time framework, solving this
type of problems requires solving partial differential equations.61 61 The dynamic programming approach

is very popular for discrete time
dynamic optimization problems.





The calculus of variations

In this chapter, we deal with the calculus of variations. In particu-
lar, we look at the following problem

max V[y(t)] =
∫ t f

t0

F[t, y(t), ẏ(t)]dt,

s.t. y(t0) = y0; y(t f ) = y f ,

where y(t) is restricted to be C1 and F is assumed to be C2.
An absolute maximum of V[y(t)] occurs at a path y∗(t) if for

all admissible paths y(t), V[y(t)] ≤ V[y∗(t)]. A relative or local
maximum of V[y(t)] occurs at y∗(t) if there is a ρ > 0 such that for
all admissible paths y(t) with |ȳ(t) − y∗(t)| < ρ for all t ∈ [0, T]:
V[y(t)] ≤ V[y∗(t)]. From now on, we will focus on local optima.

The main idea behind the calculus of variations62 is to look at small 62 And many other solution methods for
optimization problems that rely on first
order conditions.

deviations from the optimal path. The underlying idea is that if the
path is optimal, then small deviations should not increase the value
function.

Let us assume that y∗(t) is a solution of to the dynamic optimiza-
tion problem63 Consider the path, 63 Here, a local optimum.

y(t) = y∗(t) + εη(t),

where we assume,

η(t) ∈ C1[t0, t f ],

η(t0) = η(t f ) = 0.

We also require that ε ∈ R and |ε| is sufficiently small such that
V[y∗(t)] ≥ V[y(t)] for all considered ε.64 The conditions on η(t) 64 So we require y(t) to be in a local

neighbourhood of y∗(t).guarantee that y(t) is C1 and satisfies the terminal conditions y(t0) =

y0 and y(t f ) = y f .65 65 Indeed, y(t0) = y∗(t0) + εη(t0) =
y∗(t0) = y0 and y(t1) = y∗(t1) +
εη(t1) = y∗(t1) = y1.

Obviously limε→0 y(t) = y∗(t). We can write66

66 In other words, we fix y∗(t) and η(t)
and look at V[y(t)] as a variable of ε
alone.

V[y(t)] = V[y∗(t) + εη(t)] ≡ Ṽ[ε].
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Now, we have that for |ε| sufficiently small V[ε] ≤ V[0]. In other
words V[ε] obtains a local interior maximum at ε = 0. Then, the first
order condition requires that

∂V[0]
∂ε

= 0.

By eliminating ε and η(t) from the first order condition we obtain
the so-called Euler-Lagrange equation. Towards this end, let us start
by writing V[ε] out in full:

V[ε] =
∫ t f

t0

F[t, y∗(t) + εη(t), y′∗(t) + εη′(t)]dt.

The first order condition gives,67 67 Remember Leibniz’ rules.

∂V[0]
∂ε

=
∫ t f

t0

[
Fy[t, y∗(t), y′∗(t)]η(t) + Fy′ [t, y∗(t), y′∗(t)]η′(t)

]
dt = 0.

Let us abuse notation and write F(t) = F(t, y∗(t), y′∗(t)). First, we
integrate the second term by parts,∫ t f

t0

Fy′(t)η
′(t)dt =

[
Fy′(t)η(t)

]t f

t0
−
∫ t f

t0

η(t)
d
dt

[
Fy′(t)

]
dt = 0.

The first order condition becomes,∫ t f

0

[
Fy(t)−

d
dt

Fy′(t)
]

η(t)dt + Fy′(t f )η(t f )− Fy′(t0)η(t0) = 0.

The last two terms are zero.68 This gives the condition, 68 Because η(t f ) = η(t0) = 0.∫ t f

t0

[
Fy(t)−

d
dt

Fy′(t)
]

η(t)dt = 0.

This has to hold for all η(t) ∈ C1[t0, t f ] with η(t0) = η(t f ) = 0. The
following lemma will be useful.

Lemma 3 (Fundamental lemma of the calculus of variations). Let
M(t) ∈ C1[t0, t f ] such that

∫ t f
t0

M(t)η(t)dt = 0 for all η(t) ∈ C1[t0, t f ]

with η(t0) = η(t f ) = 0. Then M(t) = 0 for all t ∈ [t0, t f ].

Proof. Assume, towards a contradiction, that there is some t̂ ∈ [t0, t f ]

such that M(t̂) 6= 0. Without loss of generality M(t̂) > 0.69 As M(t) 69 Try also the proof when M(t̂) < 0.

is C1 on [t0, t f ], there exists an interval ]α, β[⊆ [t0, t f ] such that for all
t ∈]α, β[, M(t) > 0. Define,

η(t) =

{
0 if t ∈ [0, T]\]α, β[,
(t− α)2(t− β)2 for t ∈]α, β[

The function η(t) ∈ C1[t0, t f ],70 η(t0) = η(t f ) = 0 and η(t) > 0 for all 70 Show this!

t ∈]α, β[. As such, ∫ t f

t0

η(t)M(t)dt > 0,

a contradiction. Conclude that M(t) = 0 for all t ∈ [t0, t f ].
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Using above lemma, the see that,

Fy(t, y∗, y′∗)− d
dt

Fy′(t, y∗, y′∗) = 0.

This important equation is called the Euler-Lagrange equation. The Euler-Lagrange equation Fy −
d
dt Fy′ = 0 can be rewritten as,

Fy − Fy′ t − Fy′yy′ − Fy′y′y
′′ = 0.

Unless Fy′y′ = 0, this is a second-order
differential equation. Its general solu-
tion, contains two arbitrary constants.
The boundary values y(t0) = y0 and
y(t f ) = yt f should allow you deter-
mine the exact solution, but this is not
always the case. The solutions of the
Euler-Lagrange equation, which are
admissible are candidates for maxima
and minima of the problem.

Let us have a look at several examples.

1. Consider the problem,

V[y(t)] =
∫ 2

0
(12ty + y′2)dt with y(0) = 0, y(2) = 8.

The Euler-Lagrange condition gives,

Fy −
d
dt

Fy′ = 0,

↔12t− d
dt
[
2y′
]
= 0,

↔12t− 2y′′ = 0,

↔y′′ = 6t,

→y′ = 3t2 + A,

→y = t3 + At + B.

The initial and terminal conditions give y(0) = B = 0 and y(2) =
23 + 2A = 23 + 2A = 8 or A = 0. As such, the solution is y(t) = t3.

2. As a second example, let us try to find the extremals of

V[y(t)] =
∫ 5

1
[3t + (y′)1/2]dt with y(1) = 3; y(5) = 7.

Euler-Lagrange gives,

Fy −
d
dt

Fy′ = 0,

↔− d
dt

[
0.5(y′)−1/2

]
= 0,

↔− 0.25(y′′)−3/2 = 0,

↔y′′ = 0,

→y′ = A,

→y = At + B.

The initial conditions give y(1) = A+ B = 3 and y(5) = 5A+ B = 7.
So A = 1 and B = 2. The solution is y = t + 2.

3. As a third example consider the value function,

V[y(t)] =
∫ 5

0
[t + y2 + 3y′]dt with y(0) = 0; y(5) = 3.
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The Euler-Lagrange gives,

Fy −
d
dt

Fy′ = 0,

↔2y− d
dt

[3] = 0,

↔y = 0.

There is no extremal solution here as y(5) = 3 is not satisfied.

4. As a final example, consider,

V[y(t)] =
∫ T

0
y′dt with y(0) = α; y(t f ) = β.

The Euler Lagrange gives,

Fy −
d
dt

F′y = 0,

↔0− d
dt
[1] = 0,

↔0 = 0.

The latter equation is satisfied by any admissible path. There are
an infinite number of extremals here.

There are several special cases worth mentioning. If F(t, y, y′) is
linear in y′, the Euler-Lagrange can be simplified,

Fy −
d
dt

[
Fy′
]
= 0,

↔Fy′y′y
′′ + Fy′yy′ + Fy′t − Fy = 0,

↔Fy′yy′ + Fy′t − Fy = 0

This is no longer a second order equation.
Next, if F = F(t, y′) then F does not explicitly depend on y, so

Fy = 0.The Euler Lagrange becomes d
dt Fy′ = 0 or Fy′ = C, a constant,

this is also a first order differential equation.
Third, If F = F(y, y′) then F does not explicitly depend on t. Then

we have,

d
dt

[
F− y′Fy′

]
= Fyy′ + Fy′y

′′ − y′′Fy′ − y′Fyy′y
′ − y′Fy′y′y

′′,

= y′
[

Fy −
d
dt

[
Fy′
]]

= 0.

From this, we see that F − y′Fy′ = C gives the solution to the Euler
equation.

Find y(t) that minimizes the surface of
revolution around axis t with y(α) = A
and y(β) = Z.

V[y(t)] = 2π
∫ β

α
y
√

1 + (y′)2dt.

The Euler-Lagrange condition gives

F− y′Fy′ = C,

↔y
√

1 + (y′)2 − y′y
y′√

1 + (y′)2
= C,

↔y(1 + (y′)2 − (y′)2) = C
√

1 + (y′)2,

↔y2 = c2(1 + (y′)2),

↔y2 − c2 = c2(y′)2,

→y′ =
1
c

√
y2 − c2,

→
∫ cdy√

y2 − c2
= t + K,

→c ln(
y +

√
y2 − c2

c
) = t + K,

→ y +
√

y2 − c2

c
= e

t+K
c ,

→
√

y2 − c2 = ce
t+K

c − y,

→y2 − c2 = c2e
2(t+K)

c − 2ce
t+K

2 y + y2,

→y =
c
2

(
e

t+K
2 + e−

t+K
c
)

Finally, if F = F(t, y) then F does not explicitly depend on y′. In
this case, the condition becomes Fy = 0 which is generally not a
differential equation. In general, this condition will not satisfy the
initial and terminal conditions.
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The problem can be generalized in several direction.

• Several state variables:

V[y1(t), . . . , yn(t)] =
∫ T

0
F[t, y1(t), . . . , yn(t), y′1(t), . . . , y′n(t)]dt.

with initial and terminal conditions for each yi(t).

It can be easily shown that the Euler-Lagrange equation, the first
order necessary optimization condition, becomes for this situation,
a system of n Euler-Lagrange equations,

Fyi −
d
dt

[
Fy′i

]
= 0.

Consider,

V[y(t), z(t)] =
∫ T

0
(y + z + (y′)2 + (z′)2)dt.

We have F(t, y(t), z(t), y′(t), z′(t)) =
y + z + (y′)2 + (z′)2 so

1− 2y′′ = 0,

1− 2z′′ = 0

This gives y = (1/4)t2 + At + B and
z = (1/4)t2 + Ct + D, where the
coefficients are determined by the initial
and terminal conditions.

• Presence of higher order derivatives

V[y(t)] =
∫ T

0
F[t, y, y′, y′′, . . . , y(n)]dt.

Plus initial and terminal conditions for y, y′, y′′, . . . , y(n−1). This
case can be brought back to the previous one by letting z = y′,
u = y′′, . . .

Another necessary condition for an extremal is the so-called Euler
Poisson equation,

Fy −
d
dt

[
Fy′
]
+

d2

dt2

[
Fy′′
]
+ . . . + (−1)n dn

dtn

[
Fy(n)

]
= 0.

This equation is in general a differential equation of order 2n in
y(t). There are 2n arbitrary constants in the general solution which
are to be determined via the initial and terminal conditions.

Transversality conditions

The Euler-Lagrange equation is, in general, a second order
differential equation. Solving it leads to a solution with two degrees
of freedom. The initial conditions y(t0) = y0 and y(t f ) = yt f then
allows to find the exact solution.

If parts of the initial conditions are missing,71 one can use so- 71 For example, if the initial or terminal
point is not fixed.called transversality conditions to replace the missing initial and

terminal conditions.

• Fixed terminal time t f but free terminal values yt f

Assume that initial and terminal periods t0 and t f are given but
the values y(t0) = y0 and y(t f ) = y f are free.
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Let V[y(t)] =
∫ t f

t0
F[t, y, y′]. By letting

y(t) = y∗(t) + εη(t)

as before where y∗(t) is an extremal of the problem and η(t) ∈
C1[t0, t f ] with no conditions on η(0) or η(t f ). We have

V[ε] =
∫ t f

t0

F[t, y(t), ẏ(t)]dt.

The first order necessary conditions are∫ t f

t0

[
Fy(t)η(t) + Fy′(t)η

′(t)]
]

dt = 0.

As, before, integrating by parts the second term gives,∫ t f

t0

[
Fy(t)− Fy′(t)

]
η(t)dt + Fy′(t f )η(t f )− Fy′(t0)η(t0) = 0.

Now, this condition has to hold for all η(t) ∈ C1[t0, t f ].72 72 Notice that the final two terms are not
necessarily equal to zero.

– Choosing η(t0) = η(t f ) = 0 provides the standard Euler-
Lagrange condition

Fy −
d
dt

[
Fy′
]
= 0.

This makes sure that the first term in the first order condition is
zero.

– Choosing η(t0) = 0 and η(t f ) = 1, we have the additional
condition that,

[Fy′ ]t f = 0.

– Choosing η(t0) = 1 and η(t f ) = 0, we have the additional
condition

[Fy′ ]t0 = 0.

These two additional conditions are called the natural limit con-
ditions.73 The condition [Fy′ ]t f = 0 roughly means that a slight 73 If only one of the two boundary

values is free, only the corresponding
limit condition is necessary.

change of course at the last moment cannot improve the objective
function.

• Fixed terminal time and bounded terminal value
If the terminal line is vertical (t f is fixed) but truncated, which
means that y∗(t f ) is unknown but y∗(t f ) ≥ ymin for some ymin.
then we have for a maximization,74 74 Notice the similarity with the Kuhn-

Tucker complementary slackness
conditions. If [Fy′ ]t f < 0, you would like
to decrease yt f but as yt f = ymin this is
not allowed.

[Fy′ ]t f ≤ 0,

y∗(t f ) ≥ ymin,

(y∗(t f )− ymin)[Fy′ ]t f = 0.
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From a practical point of view, [Fy′ ]t f = 0 is first considered and if
the resulting optimal path satisfies y∗(t f ) ≥ ymin we have found a
solution. Otherwise one sets y∗(t f ) = ymin and y∗(t f ) is fixed.

• Restricted terminal value and time
Assume that the terminal time t f and terminal value y(t f ) is free
but that it is required that y(t f ) = φ(t f ) for some C1 function φ(t).
So we have the problem

max
y(t),t f

∫ t f

t0

F[t, y(t), y′(t)]dt s.t. y(t0) = yt0 , y(t f ) = φ(t f ).

Let y∗(t) be an extremal solution and let y(t) = y∗(t) + εη(t) then,
we can set up the Lagrangian,75 75 It is also possible to make a detour

using the implicit function theorem,
but (as we have seen in the constrained
optimization part) this leads to the
same first order conditions.

L(ε, t f , λ) =
∫ t f

t0

F[t, y(t), y′(t)]dt− λ(φ(t f )− y(t f )).

Observe that t f is a choice variable. The first order conditions give,

Lε =
∫ t f

t0

[Fy(t)η(t) + Fy′(t)η
′(t)]dt + λη(t f ) = 0,

Lt f = F(t f )− λ(φ′(t f )− y′(t f )) = 0,

Lλ = φ(t f )− y(t f ) = 0.

The first condition can be rewritten as,76 76 Using integration by parts.∫ t f

t0

[Fy(t)−
d
dt

Fy′(t)]η(t)dt + [Fy′ ]t f η(t f )− [Fy′ ]t0 η(t0) + λη(t f ) = 0.

From the second first order condition, we get,

λ =
[F]t f

φ′(t f )− y′(t f )
.

Substituting into the first condition (and acknowledging that
η(t0) = 0) gives,

∫ t f

t0

[Fy(t)−
d
dt

Fy′(t)]η(t)dt +

(
[Fy′ ]t f +

[F]t f

φ′(t f )− y′(t f )

)
η(t f ) = 0.

This has to hold for all admissible paths η(t). Choosing η(t f ) = 0
gives the standard Euler-Lagrange condition.

Fy −
d
dt

Fy′ = 0.

Next choosing η(t f ) 6= 0 gives the additional two condition,

[F + (φ′ − y′)Fy′ ]t f = 0,

φ(t f )− y(t f ) = 0.
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• Terminal time free, terminal value fixed
This would impose the condition y(t∗f ) = y f so the Lagrangian
becomes,

L(ε, t f , λ) =
∫ t f

t0

F[t, y(t), y′(t)]dt− λ(y f − y(t∗f )).

Doing the maths, you find, in addition to the Euler-Lagrange
conditions, that the following two conditions have to be satisfied.

[F− y′(t∗f )Fy′ ]t f = 0,

y(t f ) = y f .

• Terminal time bounded, terminal value fixed
In this case, you have the following two conditions,

y(t f ) = yt f ,

t f ≤ tmax.

This gives the complementary slackness condition,

(t∗f − tmax)[F− y′Fy′ ]t f = 0.

The way this is solved is to first look at an optimal condition with
the additional constraint [F− y′Fy′ ]t f = 0. If this optimal condition
gives t f ≤ tmax the optimal solution is found. Else, you solve for
the optimal solution with the additional constraint t f = tmax.

In case of several state variables, for
example two, the objective function is
F(t, y(t), z(t), ẏ(t), ż(t)]. Then if t f is
fixed but y(t f ) and z(t f ) are free, we
have [Fy′ ]t=t f = 0 and [Fz′ ]t=t f = 0.

If y(t f ) = ψ(t f ) and z(t f ) =
φ(t f ), we have the condition[

F + (ψ′ − y′)Fy′ + (φ′ − z′)Fz′
]

t=t f
= 0.

In case derivatives of higher or-
der appear, F[t, y(t), y′(t), y′′(t), . . .]
transversality conditions are more
complex.

Let us have a look at several examples. For the first, let us find
the path y(t) that achieves the shortest distance between (0, 1) and

y = 2 − t. This is the y(t) that minimizes
∫ t f

0

√
1 + (y′)2dt with

y(0) = 1 and y(t f ) = 2− t f .
The Euler-Lagrange condition gives,

Fy −
d
dt

Fy′ = 0,

→ 2y′

2
√

1 + (y′)2
= 0,

→
√

1 + (y′)2 = C,

→(y′)2 = C2 − 1,

→y′ =
√

C2 − 1,

→y′ = k,



dynamic programming 61

for some constant k. The general solution is then y(t) = kt + A for
some constant of integration A. Also, we have the condition,

[F + (φ′ − y′)Fy′ ]t f = 0,

→
[√

1 + (y′)2 + (−1− y′)
2y′

2
√

1 + (y′)2

]
t f

= 0,

→
[√

1 + k2 + (−1− k)
2k

2
√

1 + k2

]
= 0,

→(1 + k2) = (k + 1)k,

→1 = k.

So y(t) = t + C is the general solution. The initial value gives C = 1 so
we have y(t) = t + 1.

As a second example, let us find the extremals of V[y(t)] =∫ t f
0 (ty′ + (y′)2)dt with y(0) = 1 and y(t f ) = 10 with t f free. The

Euler-Lagrange condition gives,

0− d
dt
[
t + 2y′

]
= 0,

⇐⇒ 1 + 2y′′ = 0,

→y′′ = −1/2,→ y′ = −t/2 + C,→ y = −t2/4 + Ct + D.

The transversality condition requires that

[ty′ + (y′)2 − y′(t + 2y′)]t f = 0,

⇐⇒ [−(y′)2]t f = 0,→ y′(t f ) = 0,→ −t f /2 + C = 0,→ C = t f /2.

Also y(0) = 1 gives D = 1 and since y(t f ) = 10 we also have
−t2

f /4 + t2
f /2 + 1 = 10 or 10 = t2

f /4 + 1, wich gives t f = 6 and C = 3
as solutions.

So far only extremals have been detected. In order to be sure that
they are optimal, we will give a sufficient condition for a maximum
or a minimum and a necessary second order condition.

As before, let
y(t) = y∗(t) + εη(t),

with y∗(t) an extremal of the maximization or minimization problem.
From the first order necessary condition, ∂V[0]

∂ε = 0, we deduced
the Euler-Lagrange equation, a necessary condition77 By pursuing 77 If the initial conditions are not fixed,

then the transversality conditions must
be included as an additional necessary
condition.

the reasoning on V[ε], we obtain second order sufficient conditions
for a local maximum or minimum, i.e.,

∂2V
∂ε2 > 0 (minimum) ,

∂2V
∂ε2 < 0 (maximum) .
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We have

∂2V
∂ε2 [ε] =

∫ t f

t0

[
d
dε

Fy(t)η(t) +
d
dε

Fy′(t)η
′(t)
]

dt,

=
∫ t f

t0

[
Fyy(t)η2(t) + 2Fyy′(t)η(t)η

′(t) + Fy′y′(t)(η
′(t))2

]
dt.

The integrand is a quadratic form78 78 for each value of t, we have a different
quadratic form!

[
η(t) η′(t)

] [ Fyy Fyy′

Fy′y Fy′y′

] [
η(t)
η′(t)

]
.

If it is positive definite or negative definite for all t ∈ [t0, t f ], we have
∂2V
∂ε2 > 0 or < 0.

We can make this more formal,

Theorem 17. If F[t, y, y′] is concave (convex) in (y, y′) then the Euler-
Lagrange equation is sufficient for a global maximum (minimum) of
V[y(t)].

Proof. Take the feasible path y(t) = y∗(t) + εη(t). Then, If F is concave
in (y, y′) then for all (t, y, y′), (t, y∗, y′∗).

F(t, y, y′)− F(t, y∗, y′∗) ≤ Fy(t, y∗, y′∗)(y− y∗) + Fy′ [t, y∗, y′∗](y′ − y′∗),

= ε
(

Fy(t, y∗, y′∗)η(t) + Fy′ [t, y∗, y′∗]η′(t)
)

.

Integrating both sides from t0 to t f gives,

V[y(t)]−V[y∗(t)] ≤ ε
∫ t f

t0

[
Fy[t, y∗, y′∗]η(t) + Fy′ [t, y∗, y′∗]η̇(t)

]
dt,

= ε
∫ t f

t0

[
Fy[t, y∗, y′∗]− d

dt
Fy′ [t, y∗, y′∗]

]
η(t)dt,

= 0

If the endpoints aren’t fixed, this
condition is, in general, not applicable.
However, if the terminal line is vertical
(truncated or not), the equation of
Euler-Lagrange together with the
appropriate transversality conditions
are sufficient (otherwise, condition
[Fy′ (y− y∗)]t=t f ≤ 0 must be added.

The concavity (or convexity) of F[t, y, ẏ] in (y, y′) can be checked
by considering the quadratic form Q = Fyydy2 + 2Fyy′dydy′ +
Fy′y′d(y′)2. The function F is concave in (y, y′) if Q is negative semi-
definite everywhere.79

79 As stated above if the matrix[
Fyy Fyy′

Fy′y Fy′y′

]
is negative semi-definite for all t.

Consider an example. Let V[y(t)] =
∫ t f

0

√
1 + (y′)2dt with y(0) =

A and y(t f ) = Z. Now, Fy,y and Fyy′ = 0 so,

Fy′ =
y′√

1 + (y′)2
,

Fy′y′ =
1

(1 + (y′)2)
√

1 + (y′)2
> 0.
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This shows that F is convex so the extremal is a unique minimum.
As a second example consider F(t) = 4y2 + 4yy′ + (y′)2. We have,

Fy = 8y + 4ẏ,

Fy′ = 4y + 2y′,

Fyy = 8, Fyy′ = 4, Fy′y′ = 2.

So, [
Fyy Fyy′

Fy′y Fy′y′

]
=

[
8 4
4 2

]
.

The eigenvalues are λ = 0 and λ = 10. The corresponding quadratic
form is positive semi-definite everywhere, so F is convex.

The sufficient condition that F is concave or convex everywhere
in (y, y′) is rather strong. If this condition is not met, there is also a
necessary second order condition, the so called Legendre condition.
It is much weaker but not sufficient.

If V[y(t)] reaches a maximum at y∗(t). Then

Fy′y′ [t, y∗(t), y′∗(t)] ≤ 0.

In many economic models, there is no final period t f , and one
considers settings with t f = ∞. These are the so called infinite
horizon problems. In order to solve such problems, the idea is to
extend the optimization problem on [0, t f ] → [0, ∞). As such, the
value function becomes

∫ ∞
t0

F[t, y, y′]dt.
A crucial problem is the convergence of the value

∫ ∞
t0

F[t, y, y′]dt.
This integral could either have a finite or infinite value. If F[t, y, y′] is
everywhere finite and reaches 0 at some t f ∈ R and remains equal to
0 after t f , then the integral converges.

Also, if F[t, y, y′] can be written as G[t, y, y′]e−ρt with ρ > 0 and if
G is bounded, then the integral also converges.80 80 As an example, consider the utility

maximization problem with objective
function

∫ ∞
0 e−ρtu(c(t))dt. The problem

here is to show that u(c) is bounded.

∫ ∞

t0

G[t, y, y′]e−ρt ≤
∫ ∞

t0

Ḡe−ρt,

= Ḡ lim
b→∞

[e−ρt/(−ρ)]b0,

= Ḡ(0 + 1/ρ),

= Ḡ/ρ.

If F is continuous and non-negative
then limt→∞ F[t, y, y′] = 0 is a necessary
but not sufficient condition for con-
vergence. If F is not continuous or not
non-negative, above limit is not even
necessary.

In an infinite horizon problem, there is obviously no fixed terminal
time.
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• If we take the transversality condition for t f free, then the infinite
horizon problem gives

lim
t→∞

[F− y′Fy′ ]t = 0.

• If the asymptotically terminal value is fixed81 it is obvious that 81 Let us denote this by y∞.

limt→∞ y(t) = y∞ should be added as additional constraint.

• If the terminal value y∞ is free, the following condition must be
imposed limt→∞[Fy′ ]t = 0.

• If the free terminal state is subject to a lower bound y(∞) ≥ ymin

one first tries to solve limt→∞ Fy′(t) = 0. If the resulting y(∞) ≥
ymin then everything is ok. Else, ymin is taken as the terminal
value.

In a finite horizon problem, if F[t, y, y′] is concave in (y, y′), then
the Euler-Lagrange equation is sufficient for a maximum of V[y(t)]
with fixed initial and terminal points. The latter condition remains
sufficient if t f is given, but y(t f ) is not as long as [Fy′(y− y∗)]t=t f ≤ 0

In the infinite horizon framework, this extra condition becomes

lim
t→∞

[Fy′(t)(y(t)− y∗(t))] ≤ 0.

The Ramsey problem

Consider an economy with capital stock K(t). The level of con-
sumption is denoted by C(t) and output is given by the production
function Y(t) = F(K(t)). We assume that F′ > 0 and F′′ ≤ 0.82 82 The production function is increasing

and concave.Investment, i.e., growth of capital is determined by the amount of
output that is left after consumption.

K′(t) = Y(t)− C(t) = F(K(t))− C(t).

Assume a representative consumer with instantaneous utility
function U(C(t)), with a life span of T years. The consumer has a
discount rate equal to r. The consumer then solves

max
C

∫ T

0
e−rtU(C(t))dt,

subject to K′(t) = F(K(t))− C(t); K(0) = K̄; K(T) = 0.

Substituting the constraint into the objective gives,

max
K

∫ T

0
e−rtU(K′ − F(K))dt subject to K(0) = K̄; K(T) = 0.
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The Euler-Lagrange condition is given by,

FK −
d
dt

FK′ = 0,

↔− e−rtU′(C)F′(K)− d
dt
[
e−rtU′(C)

]
= 0,

↔−U′(C)F′(K) + rU′(C)−U′′(C)C′ = 0,

↔− U′′(C)
U′(C)

C′ = F′(K)− r.

Define the elasticity of marginal utility as η(C) = − ∂ ln(U′(C))
∂ ln(C) =

−U′′(C)
U′(C) C.83 Then, 83 This is equal to the rate of relative risk

aversion. It measures the curvature of
the utility function.

η(C)
C′

C
= F′(K)− r.

The left hand side is the proportional growth of consumption multi-
plied by the elasticity of marginal utility. Or the elasticity of intertem-
poral rate of substitution.

Let us consider the special case of a CRRA utiltiy function U(C) =
C1−η

1−η with η ∈ [0, 1].84 Then η(C) = η and the equation gives, 84 CRRA stands for constant relative risk
aversion.

η
C′

C
= F′(K)− r,

C′

C
=

F′(K)− r
η

.

So the growth rate in consumption is equal to the product of the
‘intertemporal elasticity of substitution’ 1

η and the difference between
the marginal product of capital F′(K) and the discount rate r.

Exercises

Solve the following maximization problem using the Euler
equation:

• V[y(t)] =
∫ 1

0 (t + y′2)dt with y(0) = 0 and y(1) = 2. (sol: y = 2t)

• V[y(t)] =
∫ 2

0 (7y′3)dt with y(0) = 9 and y(2) = 11. (sol: y = t + 9)

• V[y(t)] =
∫ 1

0 (y + yy′ + y′ + 1
2 y′2)dt with y(0) = 2 and y(1) = 5. (sol

y = t2/2 + 5t/2 + 2.)

• V[y(t)] =
∫ π/2

0 (y2 − y′2)dt with y(0) = 0 and y(π/2) = 1. (sol
y = sin t)



dynamic programming 66

• V[y(t)] =
∫ 1

0 (1 + y′′2)dt with y(0) = 0 and y′(0) = 1, y(1) = 1 and
y′(1) = 1.

• V[y(t)] =
∫ T

0 (t2 + y′2)dt with y(0) = 4, y(T) free and T = 2. (sol:
y = 4)

• V[y(t)] =
∫ T

0 (t2 + y′2)dt with y(0) = 4, y(T) = 5, T free. (sol:
y = t + 4, T = 1)

Is F concave or convex in (y, y′)?

• V[y(t)] =
∫ t f

0 (t + (y′)2)dt. (Ans: convex)

• V[y(t)] =
∫ t f

0 (y + yy′ + y′ + (y′)2/2)dt with y(0) = 2 and y(1) = 5.
(Ans: neither convex nor concave)

• V[y(t)] =
∫ t f

0 (y2 + 4yy′ + 4(y′)2)dt with y(0) = 2e1/2 and y(1) =
1 + e. (Ans: convex).



Optimal control theory

The calculus of variations is the classical method to approach
dynamic optimization problems but is not frequently used anymore.
First, it assumes differentiability and even more of the functions
present in the problem. Also, only interior solutions are considered.

The theory known as optimal control allows, among other things,
to take into account corner solutions and solutions that give functions
which are not everywhere differentiable.

In the calculus of variation framework, the optimal path y∗(t) of
the state variable y(t) is the goal. In contrast, in the optimal control
framework, one first concentrates on the optimal path(s) of one (or
several) control variables, denoted by u(t). Once u∗(t) is determined,
the optimal path y∗(t) is obtained.85 85 In fact both optimal paths are gener-

ally obtained simultaneously.What makes a variable be called a control variable is first that its
path may be chosen,86 and second that it drives the state variable in 86 For example by a social planner

such a way to optimize the objective functional.

Let us have a look at a problem involving only one control variable
u(t) and one state variable y(t). Here u(t) is a policy instrument
which influences or drives the state variable y(t).87 To each path of 87 For example, investment determines

the capital stock.u(t) corresponds one unique path of y(t) and what is sought is the
optimal path of u∗(t) along with the corresponding path of y∗(t) that
optimizes the objective functional.

1. The control path u(t) does not necessarily have to be continuous
in order for it to be admissible. Only piecewise continuity is
required.

2. The path of the state variable y(t) is required to be C0 on [t0, t f ]

but not necessarily differentiable on [t0, t f ],88 only piecewise 88 C0 means that it is continuous.

differentiability is required. Any finite number of points of non-
differentiability is allowed for y(t).

3. Additionally, optimal control theory allows to take into account
a constraint on control variables u(t) such as imposing that it
belongs to a bounded subclass of functions.
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4. The simplest problem of optimal control leaves the terminal point
y(t f ) free.89 89 This is for theoretical reasons, the

freedom in the terminal value makes
the problem easier to handle.Consider the problem

max
u(t)

V[u(t), y(t)] =
∫ t f

t0

F[t, y(t), u(t)]dt,

s.t. y′(t) = f (t, y(t), u(t)),

u(t) ∈ U (t), y(t) ∈ Y(t), y(t0) = y0.

where U (t),Y(t) ⊆ R and F, f : R3 → R. The variable y is called
the state variable. Its value is governed by its initial value y0 and the
differential equation

y′(t) = f (t, y(t), u(t)).

This equation is called the state equation or equation of motion.90 90 In the special case where y′(t) = u(t),
this problem reduces to the problem
we encountered in the calculus of
variations.

The function V[u(t), y(t)] denotes the value of the objective func-
tion when controls are given by u(t) and the behaviour of the state
variable is summarized by y(t).

A pair of functions (y(t), u(t)) such that

u(t) ∈ U (t),
y(t) ∈ Y(t),
y(t0) = y0,

y′ = f (t, y, u).

is called an admissible pair. We assume that V[u(t), y(t)] is finite for
all admissible pairs.

For simplicity, we also assume that both F and f are continuously
differentiable in t, y and u. The problem in characterizing the optimal
solution lies in two things.

1. We are looking for a function y : [t0, t f ] → R rather than a single
value.

2. The constraint is a differential equation rather than a set of equali-
ties or inequalities.

We can make our lives a lot easier by assuming that the solutions
(u∗(t), y∗(t)) lie in the interior of the sets U (t) and Y(t) and that u∗

is continuous. Given that (u∗(t), y∗(t)) is optimal, it must be that,

V(u∗(t), y∗(t)) ≥ V(u(t), y(t)),

for all admissible pairs (u(t), y(t)) in a local neighbourhood of
(u∗(t), y∗(t)).
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As before, we look at small variations of the optimal solution of the
control variable,

u(t, ε) = u∗(t) + εη(t),

η(t0) = 0.

Let us define y(t, ε) as the unique path of the state variable that is
determined by path of the control u(t, ε), i.e.,

yt(t, ε) = f (t, y(t, ε), u(t, ε)),

y(t0, ε) = y0.

Define,

V(ε) =
∫ t f

t0

F[t, y(t, ε), u(t, ε)]dt.

Then we have,

V(ε) ≤ V(0),

for all ε in a neighbourhood around zero. Given that (y(t, ε), u(t, ε))

satisfies the equation of motion, we have that,∫ t f

t0

λ(t)[ f (t, y(t, ε), u(t, ε)− yt(t, ε)]dt = 0.

for all functions λ : [t0, t f ] → R. We take λ(t) to be C1. The function
λ(t) is called the costate variable and its interpretation is similar
to the Lagrange multiplier found in static optimization models.91 91 It is the marginal value of relaxing the

equation of motion.Similar to static optimization models, only suitable λ(t) paths will
play the role of costate variable. We have that,

V[ε] =
∫ t f

t0

(F(t)t, y(t, ε), u(t, ε) + λ(t)( f (t, y(t, ε), u(t, ε))− yt(t, ε))) dt,

It will be convenient to rewrite the term
∫ t f

t0
λ(t)yt(t, ε)dt using inte-

gration by parts,∫ t f

t0

λ(t)yt(t, ε)dt = λ(t f )y(t f , ε)− λ(t0)y0 −
∫ t f

t0

y(t, ε)λ′(t)dt.

Substituting back,

V[ε] =
∫ t f

t0

(
F[t, y(t, ε), u(t, ε) + λ(t) f (t, y(t, ε), u(t, ε) + λ′(t)y(t, ε)

)
dt,

− λ(t f )y(t f , ε) + λ(t0)y0.
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Differentiating with respect to ε, making use of Leibnitz’ rule,

V′[ε] =
∫ t f

t0

(
Fy[t, y(t, ε), u(t, ε)] + λ(t) fy(t, y(t, ε), u(t, ε)) + λ′(t)

)
yε(t, ε)dt,

+
∫ t f

t0

(Fu[t, y(t, ε), u(t, ε)] + λ(t) fu(t, y(t, ε), u(t, ε))) η(t)dt,

− λ(t f )yε(t f , ε).

Evaluating at ε = 0 gives,

0 =
∫ t f

t0

(
Fy(t) + λ(t) fy(t) + λ′(t)

)
yε(t, 0)dt,

+
∫ t f

t0

(Fu(t) + λ(t) fu(t)) η(t)dt,

− λ(t f )yε(t f , 0).

This has to hold for all η(t) and all functions λ(t). Consider the
function λ(t) obtained by,

λ′(t) = −Fy(t)− λ(t) fy(t),

with boundary condition λ(t f ) = 0. This gives,

0 =
∫ t f

t0

(Fu(t) + λ(t) fu(t)) η(t)dt.

As this has to hold for all η(t), we obtain, that for all t ∈ [t0, t f ],

Fu(t) + λ(t) fu(t) = 0,

The condition λ(t f ) = 0 is called the transversality condition.92 92 Intuitively, this condition captures
the fact that after the planning hori-
zon, there is not additional value to
changing y′(t f ).

Summarizing, we have the following set of conditions,

Fu(t) + λ(t) fu(t) = 0,

λ′(t) = −Fy(t)− λ(t) fy(t),

λ(t f ) = 0.

A more economical way of expressing the optimality conditions is
by introducing the Hamiltonian,

H(t, y(t), u(t), λ(t)) = F[t, y(t), u(t)] + λ(t) f (t, y(t), u(t)),

= F(t) + λ(t) f (t).

We can summarize the conditions found above by using the Hamilto-
nian. Necessary conditions for u∗(t) and y∗(t) to be optimal, i.e. the
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maximum principle, are that for all t ∈ [0, T],

H[t, y∗, u∗, λ∗] = max
u

H[t, y∗, u, λ∗],

y′∗ = Hλ(t, y∗, u∗, λ∗) = f (t, y∗, u∗),

λ′∗ = −Hy(t, y∗, u∗, λ∗) = −Fy(t, y∗, u∗)− λ(t) fy(t, y∗, u∗),

λ∗(t f ) = 0.

The first condition becomes

Hu(t) = Fu(t) + λ(t) f (t) = 0,

if H is differentiable in u and the solution is interior.93 Also, the 93 On the other hand, if H is (for exam-
ple) linear in u, the maximum will be
reached at a corner.

second condition simply gives the equation of motion y′ = f (t, y, u).
The third condition reads,

λ′(t) = −Hy(t) = −Fy(t)− λ(t) fy(t).

Let us maximize V[y(t), u(t)] =∫ t f
0 −(1 + u2)1/2dt subject to y′ =

u, with y(0) = A, y(t f ) free. The
Hamiltonian is given by,

H = −(1 + u2)1/2 + λu.

Then

∂H
∂u

=
−u√
1 + u2

+ λ = 0,

λ′ = − ∂H
∂y

= 0,

y′ = u,

λ(t f ) = 0.

The second condition gives λ(t) = K, a
constant. The transversality condition,
on the other hand gives K = 0. As such,
substituting λ = 0 into the the first
condition then gives u(t) = 0 for all t.
But then the equation of motion gives
y′ = 0 which means that y∗(t) = A, a
constant.

As a second example consider max-
imizing V[y(t), u(t)] =

∫ 2
0 (2y− 3u)dt

subject to y′ = y + u. with y(0) = 4, y(2)
free and u(t) ∈ [0, 1].

The Hamiltonian is H = (2y− 3u) +
λ(y + u). The Hamiltonian is linear in
u with derivative −3 + λ. So if λ > 3,
u∗ = 2 if λ < 3, u∗ = 0.

The other condition gives

λ′ = −2− λ.

This is a linear first order equation with
general solution λ(t) = Ae−t − 2. The
condition λ(t f ) = 0 gives 0 = Ke−2 − 2
or K = 2e2. So λ∗(t) = 2e2−t − 2.

On the interval [0, 2], λ∗(t) decreases
from 2e2 − 2 > 3 to 0 < 3. λ(t) = 3
if e2−t = 2.5, so t = 2 − ln(2.5).
Then u∗(t) = 2 in [0, 2− ln(2.5)] and
u∗(t) = 0 for t ∈ [2− ln(2.5), 2].

This is an example of a Bang-Bang
control. The equation of motion is
y′ = y + u so in phase one this is
y(t) = Wet − 2. In phase 2, we have
y′ = y, then the general solution
is Let. The initial condition fixes
W = 6. Continuity of y∗ requires
that 6e2−ln(2.5) − 2 = Le2−ln(2.5) so
L = 6− 2e−2+ln(2.5).

For other terminal conditions, we get other transversality condi-
tions.

• Fixed terminal point
In case the terminal point y(t f ) = y f with y f is fixed. The pertur-
bation η(t) can not be arbitrary as y′ = f (t, y, u) must restrict u(t)
such that y∗(t f ) = y f . It can be shown that the maximum principle
remains valid if the terminal condition λ(t f ) = 0 is replaced by the
terminal condition y(t f ) = y f .

• Horizontal terminal line (y(t f ) given, t f free)
In this setting, the transversality condition is given by [H]t f = 0.

• Terminal curve (y f = φ(t f ), φ given)
It can be proven in this case, that the transversality condition is
now [H − λφ′]t=t f = 0.

• Truncated vertical terminal line (t f given, y(t f ) ≥ ymin)
As before, either y∗(t f ) > ymin or y∗(t f ) = ymin A simple rea-
soning yields the following complementary slackness condition
transversality condition,

[(y− ymin)λ]t f = 0.

From a practical point of view, let λ(t f ) = 0 determine y(t f ).
If the latter gives y(t f ) ≥ ymin, then everything is ok. Else, set
y(t f ) = ymin and consider a problem with a fixed terminal point.
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• Truncated horizontal terminal line (yt f given, t f ≤ tmax)
As in the previous case, we necessarily have,

[(t− tmax)H]t f = 0. Consider the problem of maximizing

maxV[y(t)] =
∫ 1

0
(−u2)dt,

s.t. y′ = y + u,

y(0) = 1,

y(1) = 0.

We have H = (−u2) + λ(y + u)
nonlinear in u. So,

∂H
∂u

= 0→ −2u + λ = 0

λ′ = − ∂H
∂y
→ λ′ = −λ,

y′ =
∂H
∂λ
→ y′ = y + u.

This gives, u = λ/2, λ′ + λ = 0 or
λ(t) = Ke−t and y′ = y + Ke−t. Solving
this gives, y(t) = Wet − (K/4)e−t.

The initial condition gives 1 =
W − (K/4) and 0 = We− K/(4e). Then
K = 4e2/(1− e2) and W = 1/(1− e2).

As another example, consider

maxV =
∫ 1

0
(−1)dt,

s.t. y′ = y + u,

y(0) = 5,

y(t f ) = 11,

T is free ,

u(t) ∈ U = [−1, 1].

The Hamiltonian is H = −1 + λ(y + u).
We see that H is linear in u so it reaches
a maximum at one of the extremes, −1
or 1. We have that u∗(t) = 1 if λ > 0
and u∗(t) = −1 if λ < 0.

Also, λ′ = − ∂H
∂y = −λ. So λ(T) =

Ke−t.
The sign of λ is that of K for all

t > 0. Consequently, a bang-bang
phenomenon occurs even though U =
[−1, 1]. The transversality condition
is H(t f ) = 0 which requires −1 +

Ke−t f (11 + u∗) = 0. As 11 + u∗ > 0,
K > 0. Then λ(t) > 0 for all t and
u∗(t) = 1.

In addition y′ = ∂H
∂λ = y + u, so

y′ = y + 1 and y = K̄et − 1. From
y(0) = 5, K̄ = 6 and y∗(t) = 6et − 1.

Going back to the transversaility
condition H(t f ) = 0 we get −1 +

Ke−t f (11 + 1) = 0 so K = et f /12 and we
know 11 = 6et f − 1 or et f = 2. From this
K = 1/6. Conclude that λ∗(t) = e−1/6.
Finally t f = ln(2).

If the Hamiltonian H[t, y, u, λ] is differentiated with respect to t,
we have

d
dt
[H] = Ht + Hyy′ + Huu′ + Hλλ′.

The necessary condition Hu = 0, and condition Hy = −λ′, Hλ = y′

imply that,

d
dt
[H] = Ht.

If the problem is autonomous, i.e. if t is not present as a separate
argument in H, then Ht = 0, which means that the value of the
Hamiltonian at the optimal solution H(y∗(t), u∗(t)) is a constant.

The simplest problem of the calculus of variations is

maxV[y(t)] =
∫ t f

t0

F[t, y(t), y′(t)]dt,

s.t. y(t0) = y0; y(t f ) = y f .

If y′(t) is substituted by u(t), we get,

maxV[y(t), u(t)] =
∫ t f

T0

F[t, y(t), u(t)]dt,

s.t. y′ = u,

y(t0) = y0, y(t f ) = y f .

which is a simple optimal control problem with Hamiltonian H =

F[t, y(t), u(t)] + λu. The maximum principle gives,

Hu = 0→ Fy′ + λ = 0,

λ′ = −∂H
∂y

= −Fy,

y′ = Hλ = u.

So we have λ = −Fy′ and λ′ = −Fy. This gives d
dt [−Fy′ ] = −Fy

which is the Euler-Lagrange condition. The transverality condition
λ(t f ) = 0 is equal to the condition [Fu]t f = [Fy′ ]t f = 0 which is the
transversality condition for a free terminal value.
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If y(t f ) is given but not the terminal time t f , we have the condition

H(t f ) = 0,

↔[F + λu]t=t f = 0,

↔[F− y′Fy′ ]t=t f = 0.

This is the transversality condition for the calculus of variations.

The current value Hamiltonian

In many economic models, the integrand function F[t, y, u] is of the
form G[t, y, u]e−ρt. In this case, we can write the problem as,

max
∫ t f

t0

e−ρtG[t, y, u]dt,

s.t. y′ = f (t, y, u).

The Hamiltonian is

H = e−ρtG[t, y, u] + λ f (t, y, u).

In order to analyse this problem, one often makes use of another
Hamiltonian, called the current value hamiltonian, which is obtained
by multiplying the Hamiltonian by eρt.

C = Heρt = G[t, y, u] + λ(t)eρt f (t, y, u) = G[t, y, u] + m(t) f (t, y, u).

Where we introduced the multiplier m(t) = λ(t)eρt.
The conditions are somewhat different,

1. u maximizing H becomes that u maximizes C.

2. y′ = Hλ becomes y′ = Cm.

3. λ′ = −Hy becomes m′ − ρm = −Cy.

4. the transversality condition λ(t f ) = 0 becomes m(t f )e
−ρt f = 0.

5. the transversality condition [H]t f = 0 becomes [C]t f e−ρt f = 0.

In order to get the intuition, observe,

Hu = e−ρtCu = 0↔ Cu = 0

y′ − Hλ = y′ − Cm = 0,

λ′ = −Hy ↔ m′e−ρt − ρme−ρt = −e−ρtCy ↔ m′ − ρm = −Cy.

The current value Hamiltonian is frequently used in economics.
However, care must be taken as the interpretation of the multiplier
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changes a bit. The multiplier λ(t) measures the shadow price of
y′(t) in period t0 terms (you’re optimizing the discounted sum so
everything gets discounted to the present). This is also, why H
if called the present value Hamiltonian. On the other hand, the
multiplier m(t) for the current value Hamiltonian gives the shadow
price of y′(t) measured in period t units.

Consider the infinite horizon problem. The transversality con-
dition states that limt→∞ λ(t) = 0 meaning that the present value
shadow price of an increase in y′(t) goes to zero. The corresponding
transversality condition for the current value Hamiltonian is that
limt→∞ m(t)e−ρt = 0. This condition allows m(t) to go to infinity
as t → ∞. However, the increase in m(t) should be slower than the
exponential growth of eρt.

Sufficient conditions

For the standard problem, the necessary conditions of the maxi-
mum principle are sufficient for a global maximum of V if

• F and f are differentiable and concave in (y, u).

• λ∗(t) ≥ 0 for all t ∈ [t0, tF] if f is non-linear in y or in u.

These are called Mangassarian’s conditions. To see that they are
sufficient, assume that F and f are concave in (y, u). Then, we have
for any (t, y, u) and (t, y∗, u∗) in their domains,

F[t, y, u]− F[t, y∗, u∗] ≤ Fy[t, y∗, u∗](y− y∗) + Fu[t, y∗, u∗](u− u∗),

f (t, y, u)− f (t, y∗, u∗) ≤ fy(t, y∗, u∗)(y− y∗) + fu(t, y∗, u∗)(u− u∗).

Then,94 94 The next to last line uses integration
by parts. The last line follows from the
transversality condition λ(t f ) = 0 and
the initial condition y(t0) = y∗(t0) = y0.
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V[y, u]−V[y∗, u∗] ≤
∫ t f

t0

[Fy[t, y∗, u∗](y− y∗) + Fu[t, y∗, u∗](u− u∗)]dt,

=
∫ t f

t0

[(
−λ′∗(t)− λ∗(t) fy(t, y∗, u∗)

)
(y− y∗)− λ∗(t) fu(t, y∗, u∗)(u− u∗)

]
dt,

=
∫ t f

t0

−λ′∗(t)(y− y∗)dt,

+
∫ t f

t0

λ∗
[
− fy(t, y∗, u∗)(y− y∗)− fu(t, y∗, u∗)(u− u∗)

]
dt,

≤
∫ t f

t0

−λ′∗(t)(y− y∗)dt,

+
∫ t f

t0

λ∗ [ f (t, y∗, u∗)− f (t, y, u)] dt,

=
∫ t f

t0

−λ′∗(t)(y− y∗)dt,

+
∫ t f

t0

λ∗
[
y′∗ − y′

]
dt,

= −λ(t f )(y(t f )− y∗(t f )) + λ(t0)(y(t0)− y∗(t0)) +
∫ t f

t0

λ∗(y′ − y′∗)dt,

+
∫ t f

t0

λ∗
[
y′∗ − y′

]
dt,

= 0.

It is easy to show that the theorem remains true if y(t f ) = y f is
given and even if the terminal line is (vertical) or truncated.

The sufficient condition of Arrow is weaker than Mangasarian’s.
Define the Maximized Hamiltonian M(t, y(t), λ(t)) as follows

M(t, y(t), λ(t)) = max
u(t)

H(t, y(t), u(t), λ(t)).

The sufficient condition of Arrow requires that M is concave in y.
Consider any other feasible path u(t) and y(t). Then,95 95 The last inequality follows from

concavity of M in y (for fixed λ).

F(t, y, u) + λ∗ f (t, y, u) ≤ M(t, y, λ∗),

≤ M(t, y∗, λ∗) + My(t, y∗(t), λ(t)∗)(y(t)− y∗(t)).

Then,

F(t, y, u) + λ∗ f (t, y, u),

≤ F(t, y∗, u∗) + λ∗ f (t, y∗, u∗) + My(t, y∗, λ∗)(y− y∗).

From the Envelope theorem and the first order conditions,

My(t, y∗, λ∗) = Hy(t, y∗, u∗, λ∗) = −λ∗′,
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So,

F(t, y, u) ≤ F(t, y∗, u∗) + λ∗(y′∗ − y′)− λ∗′(y− y∗).

Taking the integral on both sides, gives,∫ t f

t0

F(t, y, u)dt ≤
∫ t f

0
F(t, y∗, u∗)dt +

∫ t f

0
λ∗(y′ − y′∗)dt−

∫ t f

0
λ∗′(y− y∗)dt.

Integrating by parts, and using the fact that y(t0) = y∗(t0) = y0 and
λ∗(t f ) = 0 gives, ∫ t f

t0

F(t, y, u)dt ≤
∫ t f

t0

F(t, y∗, u∗)dt.

Summarizing, the sufficient condition of Arrow is that,

• M is concave in y for all t ∈ [t0, t f ] and λ fixed.

• As long as t f is given, the theorem can be extended to terminal
conditions yt f given and truncated terminal lines.

• The latter theorem can also be re-written in terms of the current
Hamiltonian C.

Consider the problem,

maxV[y, u] =
∫ t f

0
−(1 + u2)1/2dt,

s.t. y′ = u,

y(0) = y0, y(t f ) free.

We will check the sufficient conditions
of Mangasarian and of Arrow.

For Mangasarian, F = −(1 + u2)1/2

only depends on u. We have,

Fu = − u√
1 + u2

,

Fuu =
−
√

1 + u2 + u2
√

1+u2

(1 + u2)
=

−1
(1 + u2)2/3 .

We see that Fuu < 0 so F is concave in u.
As f is equal to u, it is linear in u (and
in y), thus concave in u. As f is linear,
there is not need for λ(t) ≥ 0.

For Arrow, we have u∗ = λ
(1−λ2)1/2 .

M(t, y, λ) = F[t, y, u∗] + λ f (t, y, u∗),

is independent of y, as such, it is also
concave in y.

For a second example consider

maxV[u] =
∫ 1

0
−u2dt,

s.t. y′ = y + u,

y(0) = 1, y(1) = 0.

We have F[t, y, u] = −u2, which is
clearly concave in (y, u). Furthermore,
f (t, y, u) = y + u, linear in y and u. As
such, it is also concave in (y, u)

For Arrow, as u∗ = λ/2, M =
−(u∗)2 + λ(y + u∗) = −λ2/4 + λ(y +
λ/2) which is linear in y for given λ.

For a final example, consider

max
∫ t f

0
(−1)dt,

s.t. y′ = 2u,

y(0) = 8, y(t f ) = 0, u(t) ∈ [−1, 1].

We had u∗(t) = −1 so M = (−1) +
λ2(−1) which is independent of y so
concave in y.

Also F = −1 which is concave in (y, u)
and f = 2u which is concave in (y, u).
But, t f is free . . .

Variations

For problems of many state and control variables, the problem can
be formulated as follows,

max V =
∫ t f

t0

F[t, y1, y2, . . . , ym, u1, u2, . . . , um]dt,

s.t. y′j = f (t, y1, y2, . . . , ym, u1, u2, . . . , um), j = 1, . . . , m

with yj(t0) = yj
0 and yj(t f ) = yj

f

Define H = F[t, y1, . . . , ym, u1, . . . , um]+∑n
j λj f j(t, y1, . . . , ym, u1, . . . , um).

Then, the maximum principle becomes

(u∗,1, . . . , u∗,m) ∈ arg max
u1,...um

H,

y′j = Hλj ,

λj′ = −Hyj .

For infinite problems the transversality condition has to be
adjusted. The general condition is given by,

lim
t→∞

[H] = 0.
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If the terminal state y∞ is fixed, we quite naturally have

lim
t→∞

y(t) = y∞.

If not, limt→∞ λ(t) = 0 is a necessary transversality condition. Some
authors contest the validity of the latter transversality condition.

The maximum principle is sufficient for a global maximum if
either H is concave in (y, u) or M(t, y, λ) is concave in y for λ given
and limt→∞ λ(t)[y(t)− y∗(t)] ≥ 0.

Optimal growth model

Consider a representative consumer maximizing the present
value of utility of consumption for society, and also accumulate a
specified capital stock by the end of the horizon.

The stock of capital K(t) is the only factor of production. Let F(K)
be the output. Assume F(0) = 0, F′(K) > 0, F′′(K) < 0. This implies
decreasing marginal productivity. Let C(t) be the amount of output
allocated to consumption and let I(t) = F(K(t))− C(t) be the amount
invested. Let δ be the constant rate of depreciation of capital. Then
the capital stock equation is given by,

K′(t) = I(t)− δK(t) = F(K(t))− C(t)− δK(t).

Let u(C) be societies level of utility. We assume u(0) = 0, u(c) ≥
0, u′(C) > 0, u′′(C) < 0. Let ρ denote societies discount rate and T the
planning horizon. Then the problem is,

max
∫ t f

0
u(C(t))dt,

s.t. K′ = F(K)− C− δK,

K(0) = K0, K(t f ) = Kt f .

The current value Hamiltonian is given by,

u(C) + m(F(K)− C− δK).

The maximal principle gives the conditions

u′(C)−m = 0,

K′ = f (K)− C− δK,

m′ − ρm = −m(F′(K)− δ).

Differentiating the first condition with respect to time gives,

u′′(C)C′ = m′ = −m(F′(K)− δ− ρ).
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Using again the first condition gives,

u′′(C)C′ = −u′(C)( f ′(K) + δ− ρ),

↔C′

C
=

(
−u′′(C)C

u′(C)

)−1

(F′(K)− δ− ρ).

This is the famous Euler equation. On the left hand side, you have
the growth rate of consumption. The first term on the right is the
inverse of the measure of relative risk aversion. This shows that the
growth rate is higher the higher the marginal product of capital, the
lower the depreciation rate and the lower the discount rate.

Now, assume there is a a new factor of production labour (which
for simplicity we treat the same as the population), which is growing
exponentially at a fixed rate g > 0. Let L(t) denote the amount of
labour at time t.

Let F(K, L) be the production function which is assumed to be
concave and homogeneous of degree one in K and L. We define
k = K/L and the per capita production f (k) as

f (k) =
F(K, L)

L
= F(K/L, 1).

Note that K = kL so,

K′ = k′L + kL′ = k′L + kgL.

This gives,

F(K, L)− C− δK = k′L + kgL,

↔L( f (k)− c− δk) = L(k′ + kg),

→k′ = f (k)− c− δk− kg.

We assume that u(c) is the per utility of per capital consumption
c = C/L then the optimization problem is,

max
∫ T

0
u(c)dt,

s.t. k̇ = f (k)− c− (δ + g)k,

k(0) = k0, k(T) = kT .

The maximum principle gives,

u′(c)− λ = 0,

λ′ = (ρ + δ− f ′(k))λ,

k′ = f (k)− c− (δ + g)k.

Draw a state-space diagram for this solution in the ck-plane.
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Optimal investement

Consider a price taking firm that maximizes the discounted value
of all future profits. The firm has to decide on the level of investment
I but there are adjustment costs φ(I) such that φ′(I) ≥ 0 and φ(.) is
convex. We assume that φ(0) = φ′(0) = 0. The capital stock K(t)
adjusted according to,

K′(t) = I − δK,

where δ ∈ (0, 1) is the depreciation rate. The output for a level K(t)
of capital is given by f (K(t)). The firm solves the following problem.

max
∫ ∞

0
e−rt[ f (K)− I − φ(I)]dt,

s.t. K′ = I − δK, K(0) given.

The current value Hamiltonian is given by,

C = [ f (K)− I − φ(I)] + q[I − δK],

where q is the co-state variable.96 The maximum principle gives, 96 The reason for the choice of q will
become apparent soon.

− 1− φ′(I) + q = 0,

q′ − rq = − f ′(K) + δq,

K′ = I − δK,

lim
t

e−rtq(t) = 0.

Often the last transversality condition is replaced by lim e−rtq(t)K(t) =
0. Differentiating the first conditions with respect to time gives,

q′ = φ′′(I)I′.

Substituting into the second condition,

φ′′(I)I′ = − f ′(K) + (δ + r)(1 + φ′(I)),

→I′ =
1

φ′′(I)
[(δ + r)(1 + φ′(I))− f ′(K)].

Observe that if φ′′(I) → 0 then I jumps immediately to the optimal
investment value. However, due to the adjustment costs, investments
are adjusted gradually to the optimal value. Draw a state-space
diagram for this solution in the KI-plane.

The q-theory of investment defines the q value as the ratio of the
value of an extra unit of capital over the replacement cost. If the ratio,
called the Tobin-q is larger than 1, then it is optimal to increase the
capital stock. In the steady state, q′ = 0 so we have that,

q =
f ′(k)
r + δ

= 1 + φ′(I∗) = 1 + φ′(δK∗).
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This is close to one, except for the adjustment costs in the steady
state, i.e. φ′(δK∗). The Tobin-q is often estimated using the ratio of
the stock market price of a firm and the book value of the firm. If the
value is larger than one it means that investments should increase
as the value of installed capital is larger than the replacement cost.
Notice however, that this measures the average q while in theory it is
the marginal q that is relevant.

Exercises

Solve the following maximization problem using the maximum
principle

• V[y(t), u(t)] =
∫ 2

0 (y− u2)dt with y′ = u, y(0) = 0 and y(2) free.
(sol: y = −t2/4 + t)

• V[y(t), u(t)] =
∫ 2

0 (2y− 3u)dt with y′ = y + u, u ∈ [0, 2], y(0) = 4
and y(2) free.

• V[y(t), u(t)] =
∫ 1

0 (−u2)dt with y′ = y + u, y(0) = 1 and y(1) = 0.
(sol : y = et/(1− e2) + e2−t/(e2 − 1))

• V[y(t), u(t)] =
∫ 1

0 (−u2)dt with y′ = y + u, y(0) = 1 and y(1) ≥ 2.
(sol: y = et.)

• V[y(t), u(t)] =
∫ 20

0 (4y − u2)e−0.25tdt with y′ = −0.25y + u,
y(0) = y0, y(20) free. (sol: y = (y0 − 16 + 16/3e−10)e−0.25t +

16− (16/3)e0.5t−10)

Draw the phase diagram of the following problem (call λ the
shadow price of the current value Hamiltonian).

• max
∫ ∞

0 (x − u2)e−0.1tdt, x′ = −0.4x + u, x(0) = 1, x(∞) free,
u ∈ (0, ∞). in the λx-space.

• max
∫ ∞

0
1

1−σ C1−σe−rtdt, K′ = aK − bK2 − C, K(0) = K0 > 0 where
a > r > 0 and σ > 0 and with K(t) ≥ 0 for all t in the λK space.

• max
∫ ∞

0 (ax− 1/2u2)e−rtdt, x′ = −bx + u, x(0) = x0, x(∞) free and
all constants are positive in the λx-space.

• max
∫ T

0 ln(C(t))e−rtdt, K′ = AKα − C, K(0) = K0, K(T) = KT

where r > 0 and A > 0 and α ∈ (0, 1) for all t in the CK-space.
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