Principles in Economics and Mathematics: the mathematical part

Bram De Rock

< ロ > < 同 > < 回 > < 回 >

Practicalities about me

- Bram De Rock
- Office: R.42.6.218
- E-mail: bderock@ulb.ac.be
- Phone: 02 650 4214
- Mathematician who is doing research in Economics
- Homepage: http://www.revealedpreferences.org/bram.php

Practicalities about the course

- 12 hours on the mathematical part
- Micael Castanheira: 12 hours on the economics part
- Slides are available at MySBS and on http://mathecosolvay.com/spma/
- Schedule
 - Tuesday 17/9 and 24/9, 18.00-21.00, R42.2.107
 - Wednesday 18/9, 18.00-21.00, R42.2.103
 - Thursday 26/9, 18.00-21.00, R42.2.107
- Course evaluation
 - Written exam in the beginning of November to verify if you can apply the concepts discussed in class
 - Compulsory for students in Financial Markets
 - On a voluntary basis for students in *Quantitative Finance*

Course objectives and content

- Refresh some useful concepts needed in your other coursework
 - No thorough or coherent study
 - Interested student: see references for relevant material
- Content:
 - Calculus (derivatives, optimization, concavity)
 - Linear algebra (solving system of linear equations, matrices, linear (in)dependence)
 - Fundamentals on probability (probability and cumulative distributions, expectations of a random variable, correlation)

References

- Chiang, A.C. and K. Wainwright, "Fundamental Methods of Mathematical Economics", Economic series, McGraw-Hill.
- Green, W.H., "*Econometric Analysis, Seventh Edition*", Pearson Education limited.
- Luderer, B., V. Nollau and K. Vetters, "Mathematical Formulas for Economists", Springer, New York. ULB-link
- Simon, C.P. and L. Blume "*Mathematics for Economists*", Norton & Company, New York.
- Sydsaeter, K., A. Strom and P. Berck, "Economists' Mathematical Manual", Springer, New York. ULB-link

Motivation Functions of one variable Functions of more than one variable Optimization

• • • • • • • • • • • • •

Outline

Introduction

2 Calculus

- Motivation
- Functions of one variable
- Functions of more than one variable
- Optimization

3 Linear algebra

4 Fundamentals of probability theory

Motivation Functions of one variable Functions of more than one variable Optimization

Role of functions

- Calculus = "the study of functions"
- Functions allow to exploit mathematical tools in Economics
- E.g. make consumption decisions
 - max $U(x_1, x_2)$ s.t. $p_1 x_1 + p_2 x_2 = Y$
 - Characterization: $x_1 = f(p_1, p_1, Y)$
 - Econometrics: estimate f
 - Allows to model/predict consumption behavior
- Warning about identification
 - Causality: what is driving what?
 - Functional structure: what is driving the result?
 - Does the model allow to identify

< 同 > < ∃ >

Motivation Functions of one variable Functions of more than one variable Optimization

Derivatives

- Marginal changes are important in Economics
 - The impact of a infinitesimally small change of one of the variables
 - Comparative statistics: what is the impact of a price change?
 - Optimization: what is the optimal consumption bundle?
- Marginal changes are mostly studied by taking derivatives
- Characterizing the impact depends on the function
 - $f: D \subseteq \mathbb{R}^n \to \mathbb{R}^k : (x_1, \ldots, x_n) \mapsto (y_1, \ldots, y_k) = f(x_1, \ldots, x_n)$
 - We will always take k = 1
 - First look at n = 1 and then generalize
 - Note: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$

< ロ > < 同 > < 回 > < 回 >

Motivation Functions of one variable Functions of more than one variable Optimization

• • • • • • • • • • • • •

Outline

2 Calculus

- Motivation
- Functions of one variable
- Functions of more than one variable
- Optimization

3 Linear algebra

4 Fundamentals of probability theory

Motivation Functions of one variable Functions of more than one variable Optimization

Functions of one variable: $f : D \subseteq \mathbb{R} \to \mathbb{R}$

$$\frac{df}{dx} = f' = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

- Limit of quotient of differences
- If it exists, then it is called the derivative
- f' is again a function
- E.g. $f(x) = 3x^2 4$
- E.g. discontinuous functions, border of domain, f(x) = |x|

< ロ > < 同 > < 回 > < 回 >

Motivation Functions of one variable Functions of more than one variable Optimization

Some important derivatives and rules

Let us abstract from specifying the domain D and assume that $c, n \in \mathbb{R}_0$

• If
$$f(x) = c$$
, then $f'(x) = 0$

• If
$$f(x) = cx^n$$
, then $f'(x) = ncx^{n-1}$

• If
$$f(x) = ce^x$$
, then $f'(x) = ce^x$

• If
$$f(x) = c \ln(x)$$
, then $f(x) = c \frac{1}{x}$

•
$$(f(x) \pm g(x))' = f'(x) \pm g'(x)$$

•
$$(f(x)g(x))' = f'(x)g(x) + f(x)g'(x) \neq f'(x)g'(x)$$

•
$$(\frac{f(x)}{g(x)})' = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$$

Motivation Functions of one variable Functions of more than one variable Optimization

• • • • • • • • • • • •

Application: the link with marginal changes

- By definition it is the limit of changes
- Slope of the tangent line
 - Increasing or decreasing function (and thus impact)
 - Does the inverse function exist?
- First order approximation in some point c
 - Based on expression for the tangent line in c
 - $f(c + \Delta x) \approx f(c) + f'(c)(\Delta x)$
 - More general approximation: Taylor expansion

Motivation Functions of one variable Functions of more than one variable Optimization

• • • • • • • • • • • •

Application: elasticities

• The elasticity of f in x: $\frac{f'(x)x}{f(x)}$

- The limit of the quotient of changes in terms of percentage
 - Percentage change of the function: $\frac{f(x+\Delta x)-f(x)}{f(x)}$
 - Percentage change of the variable: $\frac{\Delta x}{x}$

• Quotient:
$$\frac{f(x+\Delta x)-f(x)}{\Delta x} \frac{x}{f(x)}$$

- Is a unit independent informative number
 - E.g. the (price) elasticity of demand

Motivation Functions of one variable Functions of more than one variable Optimization

Application: comparative statics for a simple market model

- Demand: *Q* = 10 − 4*P*
- Supply: $Q = 2 + \alpha P$

•
$$P^* = \frac{8}{4+\alpha}$$
 and $Q^* = \frac{8+10\alpha}{4+\alpha}$

•
$$\frac{dP^*}{d\alpha} = \frac{-8}{(4+\alpha)^2}$$
 and $\frac{dQ^*}{d\alpha} = \frac{32}{(4+\alpha)^2}$

• The elasticity of demand is $\frac{-4P}{10-4P}$

Introduction Motivation Calculus Functions of one variable Linear algebra Functions of more than one variable Fundamentals of probability theory Optimization

Some exercises

- Compute the derivative of the following functions (defined on $\mathbb{R}^+)$
 - $f(x) = 17x^2 + 5x + 7$
 - $f(x) = -\sqrt{x} + 3$
 - $f(x) = \frac{1}{x^2}$
 - $f(x) = 17x^2e^x$
 - $f(x) = \frac{x \ln(x)}{x^2 4}$
- Let $f(x) : \mathbb{R} \to \mathbb{R} : x \mapsto x^2 + 5x$.
 - Determine on which region f is increasing
 - Is f invertible?
 - Approximate f in 1 and derive an expression for the approximation error
 - Compute the elasticity in 3 and 5

Motivation Functions of one variable Functions of more than one variable Optimization

The chain rule

Often we have to combine functions

• If z = f(y) and y = g(x), then z = h(x) = f(g(x))

- We have to be careful with the derivative
- A small change in x causes a chain reaction
 - It changes y and this in turn changes z
- That is why $\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{dx} = f'(y)g'(x)$
 - Can easily be generalized to compositions of more than two functions

•
$$\frac{dz}{dx} = \frac{dz}{dy}\frac{dy}{du}\cdots\frac{dy}{dx}$$

• E.g. if
$$h(x) = e^{x^2}$$
, then $h'(x) = e^{x^2} 2x$

A (1) > A (1) > A

Motivation Functions of one variable Functions of more than one variable Optimization

Higher order derivatives

- The derivative is again a function of which we can take derivatives
- Higher order derivatives describe the changes of the changes
- Notation
 - f''(x) or more generally $f^{(n)}(x)$
 - $\frac{d}{dx}(\frac{df}{dx})$ or more generally $\frac{d^n}{dx^n}f(x)$
- E.g. if $f(x) = 5x^3 + 2x$, then $f'''(x) = f^{(3)}(x) = 30$

Motivation Functions of one variable Functions of more than one variable Optimization

Application: concave and convex functions

$$f: D \subset \mathbb{R}^n \to \mathbb{R}$$

• f is concave

- $\forall x, y \in D, \forall \lambda \in [0, 1] : f(\lambda x + (1 \lambda)y) \ge \lambda f(x) + (1 \lambda)f(y)$
- If $n = 1, \forall x \in D : f''(x) \le 0$
- f is convex
 - $\forall x, y \in D, \forall \lambda \in [0, 1] : f(\lambda x + (1 \lambda)y) \le \lambda f(x) + (1 \lambda)f(y)$
 - If $n = 1, \forall x \in D : f''(x) \ge 0$

Motivation Functions of one variable Functions of more than one variable Optimization

Application: concave and convex functions

- Very popular and convenient assumptions in Economics
 - E.g. optimization
- Sometimes intuitive interpretation
 - E.g. risk-neutral, -loving, -averse
- Don't be confused with a convex set
 - S is a set $\Leftrightarrow \forall x, y \in S, \forall \lambda \in [0, 1] : \lambda x + (1 \lambda)y \in S$

Motivation Functions of one variable Functions of more than one variable Optimization

Some exercises

 Compute the first and second order derivative of the following functions (defined on ℝ⁺)

•
$$f(x) = -\pi$$

•
$$f(x) = -\sqrt{5x} + 3$$

•
$$f(x) = e^{-3x}$$

•
$$f(x) = \ln(5x)$$

•
$$f(x) = x^3 - 6x^2 + 17$$

Determine which of these functions are concave or convex

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Motivation Functions of one variable Functions of more than one variable Optimization

Outline

2 Calculus

- Motivation
- Functions of one variable
- Functions of more than one variable
- Optimization

3 Linear algebra

4 Fundamentals of probability theory

Functions of more than one variable Functions of more than one variable: $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$

- Same applications in mind but now several variables
 - E.g. what is the marginal impact of changing x_1 , while controlling for other variables?
- Look at the partial impact: partial derivatives

•
$$\frac{\partial}{\partial x_i} f(x_1, \dots, x_n) = f_{x_i} = \lim_{\Delta x_i \to 0} \frac{f(x_1, \dots, x_i + \Delta x_i, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{\Delta x_i}$$

 Same interpretation as before, but now fixing remaining variables

• E.g.
$$f(x_1, x_2, x_3) = 2x_1^2x_2 - 5x_3$$

• $\frac{\partial}{\partial x_1} f(x_1, x_2, x_3) = 4x_1x_2$
• $\frac{\partial}{\partial x_2} f(x_1, x_2, x_3) = 2x_1^2$
• $\frac{\partial}{\partial x_3} f(x_1, x_2, x_3) = -5$

Motivation Functions of one variable Functions of more than one variable Optimization

Partial derivative

- Geometric interpretation: slope of tangent line in the x_i direction
- Same rules hold
- Higher order derivatives

•
$$\frac{\partial^2}{\partial x_i^2} f(x_1, \dots, x_n)$$

•
$$\frac{\partial^2}{\partial x_i x_j} f(x_1, \dots, x_n) = \frac{\partial^2}{\partial x_j x_i} f(x_1, \dots, x_n)$$

• E.g.
$$\frac{\partial^2}{\partial x_i^2} f(x_1, x_2, x_3) = 4x_2 \text{ and } \frac{\partial^2}{\partial x_1 x_3} f(x_1, x_2, x_3) = 0$$

Motivation Functions of one variable Functions of more than one variable Optimization

Some remarks

• Gradient:
$$\nabla f(x_1, \ldots, x_n) = (\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n})$$

Chain rule: special case

•
$$x_1 = g_1(t), \dots, x_n = g_n(t)$$
 and $f(x_1, \dots, x_n)$
• $h(t) = f(x_1, \dots, x_n) = f(g_1(t), \dots, g_n(t))$
• $\frac{dh(t)}{dt} = h'(t) = \frac{\partial f(x_1, \dots, x_n)}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial f(x_1, \dots, x_n)}{\partial x_n} \frac{dx_n}{dt}$
• E.g. $f(x_1, x_2) = x_1 x_2$, $g_1(t) = e^t$ and $g_2(t) = t^2$
• $h'(t) = e^t t^2 + e^t 2t$

æ

イロト イヨト イヨト イヨト

Motivation Functions of one variable Functions of more than one variable Optimization

Some remarks

- Slope of indifference curve of *f*(*x*₁, *x*₂)
 - Indifference curve: all (x_1, x_2) for which $f(x_1, x_2) = C$ (with *C* some give number)
 - Implicit function theorem: $f(x_1, g(x_1)) = C$

•
$$\frac{\partial}{\partial x_1}f(x_1, x_2) + \frac{\partial}{\partial x_2}f(x_1, x_2)\frac{dg}{dx_1} = 0$$

• Slope =
$$-\frac{\frac{\partial}{\partial x_1}f(x_1, x_2)}{\frac{\partial}{\partial x_2}f(x_1, x_2)}$$

イロト イヨト イヨト イヨト

Motivation Functions of one variable Functions of more than one variable Optimization

Some exercises

 Compute the gradient and all second order partial derivatives for the following functions (defined on ℝ⁺)

•
$$f(x_1, x_2) = x_1^2 - 2x_1x_2 + 3x_2^2$$

•
$$f(x_1, x_2) = \ln(x_1 x_2)$$

•
$$f(x_1, x_2, x_3) = e^{x_1 + 2x_2} - 3x_1x_3$$

• Compute the marginal rate of substitution for the utility function $U(x_1, x_2) = x_1^{\alpha} x_2^{\beta}$

Motivation Functions of one variable Functions of more than one variable **Optimization**

Outline

Introduction

2 Calculus

- Motivation
- Functions of one variable
- Functions of more than one variable
- Optimization

3 Linear algebra

4 Fundamentals of probability theory

Motivation Functions of one variable Functions of more than one variable **Optimization**

Optimization: important use of derivatives

- Many models in economics entail optimizing behavior
 - Maximize/Minimize objective subject to constraints
- Characterize the points that solve these models
- Note on Mathematics vs Economics
 - Profit = Revenue Cost
 - Marginal revenue = marginal cost
 - Marginal profit = zero

Motivation Functions of one variable Functions of more than one variable **Optimization**

Optimization: formal problem

 $\max / \min f(x_1, \dots, x_n)$ s.t. $g_1(x_1, \dots, x_n) = c_1$ \dots $g_m(x_1, \dots, x_n) = c_m$ $x_1, \dots, x_n \ge 0$

- Inequality constraints are also possible
- Kuhn-Tucker conditions

Motivation Functions of one variable Functions of more than one variable Optimization

Necessity and sufficiency

- Necessary conditions based on first order derivatives
 - Local candidate for an optimum
- Sufficient conditions based on second order derivatives
- Necessary condition is sufficient if
 - The constraints are convex functions
 - E.g. no constraints, linear constraints, ...
 - The objective function is concave: global maximum is obtained
 - The objective function is convex: global minimum is obtained
 - Often the "real" motivation in Economics

Motivation Functions of one variable Functions of more than one variable **Optimization**

Necessary conditions

Free optimization

No constraints

•
$$f'(x^*) = 0$$
 if $n = 1$

•
$$\frac{\partial}{\partial x_i} f(x_1^*, \dots, x_n^*) = 0$$
 for $i = 1, \dots, n$

Intuitive given our geometric interpretation

Motivation Functions of one variable Functions of more than one variable **Optimization**

Necessary conditions

Optimization with positivity constraints

- No g_i constraints
- On the boundary extra optima are possible
- Often ignored: interior solutions

•
$$x_i^* \ge 0$$
 for $i = 1, ..., n$

•
$$x_i^* \frac{\partial}{\partial x_i} f(x_1^*, \dots, x_n^*) = 0$$
 for $i = 1, \dots, n$

• $\frac{\partial}{\partial x_i} f(x_1^*, \dots, x_n^*) \leq 0$ for all $i = 1, \dots, n$ simultaneously OR $\frac{\partial}{\partial x_i} f(x_1^*, \dots, x_n^*) \geq 0$ for all $i = 1, \dots, n$ simultaneously

Optimization

Necessary conditions

- Constrained optimization without positivity constraints
 - Define Lagrangian: $L(x_1, \ldots, x_n, \lambda_1, \ldots, \lambda_m) =$ $f(x_1, \dots, x_n) - \lambda_1(g_1(x_1, \dots, x_n)) - \dots - \lambda_m(g_m(x_1, \dots, x_n))$ • $\frac{\partial}{\partial x_i} L(x_1^*, \dots, x_n^*, \lambda_1^*, \dots, \lambda_m^*) = 0$ for all $i = 1, \dots, n$

 - $\frac{\partial}{\partial \lambda_i} L(x_1^*, \dots, x_n^*, \lambda_1^*, \dots, \lambda_m^*) = 0$ for all $j = 1, \dots, m$
 - Alternatively: $\nabla f(x_1^*, \ldots, x_n^*) =$ $\lambda_1^* \nabla g_1(x_1^*,\ldots,x_n^*) + \cdots + \lambda_m^* \nabla g_m(x_1^*,\ldots,x_n^*)$
 - Some intuition: geometric interpretation
 - Lagrange multiplier = shadow price

< ロ > < 同 > < 回 > < 回 >

Motivation Functions of one variable Functions of more than one variable Optimization

Application: utility maximization

$$\max U(x_1, x_2) = x_1^{\alpha} x_2^{1-\alpha} \quad s.t. \quad p_1 x_1 + p_2 x_2 = Y$$

•
$$L(x_1, x_2, \lambda_1) = x_1^{\alpha} x_2^{1-\alpha} - \lambda_1 (p_1 x_1 + p_2 x_2 - Y)$$

• $\frac{\partial L}{\partial x_1} = \alpha x_1^{\alpha-1} x_2^{1-\alpha} - \lambda_1 p_1 = 0$
• $\frac{\partial L}{\partial x_2} = (1-\alpha) x_1^{\alpha} x_2^{-\alpha} - \lambda_1 p_2 = 0$
• $\frac{\partial L}{\partial \lambda_1} = p_1 x_1 + p_2 x_2 - Y = 0$
• $x_1^* = \frac{\alpha Y}{p_1}, x_2^* = \frac{(1-\alpha)Y}{p_2} \text{ and } \lambda_1^* = (\frac{\alpha}{p_1})^{\alpha} (\frac{(1-\alpha)}{p_2})^{(1-\alpha)}$

æ

・ロト ・ 四ト ・ ヨト ・ ヨト

Motivation Functions of one variable Functions of more than one variable **Optimization**

Some exercises

- Find the optima for the following problems
 - $\max / \min x^3 12x^2 + 36x + 8$
 - max / min $x_1^3 x_2^3 + 9x_1x_2$
 - min $2x_1^2 + x_1x_2 + 4x_2^2 + x_1x_3 + x_3^2 15x_1$
 - max x_1x_2 s.t. $x_1 + 4x_2 = 16$
 - max yz + xz s.t. $y^2 + z^2 = 1$ and xz = 3
- Add positivity constraints to the above unconstrained problems and do the same

A (10) A (10) A (10)

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Outline

Introduction

- 2 Calculus
- 3 Linear algebra
 - Motivation
 - Matrix algebra
 - The link with vector spaces
 - Application: solving a system of linear equations

4 Fundamentals of probability theory

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Motivation

- Matrices allow to formalize notation
- Useful in solving system of linear equations
- Useful in deriving estimators in econometrics
- Allows us to make the link with vector spaces

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Outline

- 2 Calculus
- 3 Linear algebra
 - Motivation

Matrix algebra

- The link with vector spaces
- Application: solving a system of linear equations

4 Fundamentals of probability theory

Introduction Motivation Calculus Matrix algebra Linear algebra The link with vector spaces Fundamentals of probability theory Application: solving a system of linear equations

Matrices

$$A = (a_{ij})_{i=1,...,n;j=1,...,m} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nm} \end{pmatrix}$$

•
$$a_{ij} \in \mathbb{R}$$
 and $A \in \mathbb{R}^{n \times m}$

- *n* rows and *m* columns
- Square matrix if *n* = *m*
- Notable square matrices
 - Symmetric matrix: $a_{ij} = a_{ji}$ for all i, j = 1, ..., n
 - Diagonal matrix: $a_{ij} = 0$ for all i, j = 1, ..., n and $i \neq j$
 - Triangular matrix: only non-zero elements above (or below) the diagonal

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

< ロ > < 同 > < 回 > < 回 >

Matrix manipulations

Let $A, B \in \mathbb{R}^{n \times m}$ and $k \in \mathbb{R}$

- Equality: $A = B \Leftrightarrow a_{ij} = b_{ij}$ for all $i, j = 1, \dots, n$
- Scalar multiplication: kA = (ka_{ij})_{i=1,...,n;j=1,...,m}
- Addition: $A \pm B = (a_{ij} \pm b_{ij})_{i=1,...,n;j=1,...,m}$
 - Dimensions must be equal
- Transposition: $A' = A^t = (a_{ji})_{j=1,...,m;i=1,...,n}$

•
$$A \in \mathbb{R}^{n \times m}$$
 and $A^t \in \mathbb{R}^{m \times m}$

•
$$(A \pm B)^t = A^t \pm B^t$$

•
$$(kA)^t = kA^t$$

•
$$(A^t)^t = A$$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Matrix multiplication

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$

- $AB = (\sum_{h=1}^{m} a_{ih} b_{hj})_{i=1,...,n;j=1,...,k}$
- Multiply the row vector of A with the column vector of B
 - Aside: scalar/inner product and norm of vectors
 - Orthogonal vectors
- Number of columns of *A* must be equal to number of rows of *B*
- $AB \neq BA$, even if both are square matrices

•
$$(AB)^t = B^t A^t$$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

イロト イヨト イヨト イヨト

Example

Let
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$
• $A^t = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, $B^t \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 3 \\ 2 & 2 \\ 3 & 1 \end{pmatrix}$
• $AB = \begin{pmatrix} 2 & 0 \\ 1 & 1 \end{pmatrix}$ and $BA = \begin{pmatrix} 1 & 0 \\ 2 & 2 \end{pmatrix}$
• $AC = \begin{pmatrix} 5 & 6 & 7 \\ 4 & 4 & 4 \end{pmatrix}$
• $(AB)^t = B^t A^t = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$

æ

Introduction Motivatio Calculus Matrix alg Linear algebra The link v Fundamentals of probability theory Applicatit

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Exercises

• Let
$$A = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}, C = \begin{pmatrix} 1 & 1 \end{pmatrix}$$
 and $D = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 4 & 0 & -3 & 1 \end{pmatrix}$

• Compute
$$-3C$$
, $A + B$, $A - D$ and D^t

- Compute AB, BA, AC, CA, AD and DA
- Let A be a symmetric matrix, show then that $A^t = A$
- A square matrix A is called idempotent if $A^2 = A$
 - Verify which of the above matrices are idempotent
 - Find the value of α that makes the following matrix

idempotent: $\begin{pmatrix} -1 & 2 \\ \alpha & 2 \end{pmatrix}$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Two numbers associated to square matrices: trace

Let $A, B, C \in \mathbb{R}^{n \times n}$

- Trace(A) = $tr(A) = \sum_{i=1}^{n} a_{ii}$
- Used in econometrics
- Properties
 - $tr(A^t) = tr(A)$
 - tr(A + B) = tr(A) + tr(B)
 - tr(cA) = ctr(A) for any $c \in \mathbb{R}$
 - tr(AB) = tr(BA)
 - $tr(ABC) = tr(BCA) = tr(CAB) \neq tr(ACB)(= tr(BAC) = tr(CBA))$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Two numbers associated to square matrices: trace

Example

• Let
$$A = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$
• Then $AB = \begin{pmatrix} 21 & 0 \\ -7 & 0 \end{pmatrix}$, $BA = \begin{pmatrix} 1 & 2 \\ 10 & 20 \end{pmatrix}$ and $A + B = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}$
• $tr(A) = 1$, $tr(B) = 0$ and $tr(A + B) = 1$
• $tr(AB) = 21 = tr(BA)$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

< ロ > < 同 > < 回 > < 回 >

Two numbers associated to square matrices: determinant

Let $A \in \mathbb{R}^{n \times n}$

- If n = 1, then $det(A) = a_{11}$
- If n = 2, then $\det(A) = a_{11}a_{22} - a_{12}a_{21} = a_{11}\det(a_{22}) - a_{12}\det(a_{21})$
- If n = 3, then $\det(A) = a_{11} \det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} a_{12} \det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} + a_{13} \det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix}$
- Can be generalized to any n
- Works with columns too

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Two numbers associated to square matrices: determinant

Let $A, B \in \mathbb{R}^{n \times n}$

- $det(A^t) = det(A)$
- $det(A + B) \neq det(A) + det(B)$
- $\det(cA) = c \det(A)$ for any $c \in \mathbb{R}$
- det(AB) = det(BA)
- A is non-singular (or regular) if A^{-1} exists

• I.e.
$$AA^{-1} = A^{-1}A = I_n$$

- In is a diagonal matrix with 1 on the diagonal
- Does not always exist
- det(A) ≠ 0

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Two numbers associated to square matrices: determinant

Example

• Let
$$A = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$
• Then $AB = \begin{pmatrix} 21 & 0 \\ -7 & 0 \end{pmatrix}$, $BA = \begin{pmatrix} 1 & 2 \\ 10 & 20 \end{pmatrix}$ and
 $A + B = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}$
• det $(A) = 0$, det $(B) = -7$ and det $(A + B) = -28$

• det(AB) = 0 = det(BA)

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Exercises

• Let
$$A = \begin{pmatrix} 2 & 4 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

• Compute tr(A) and det(-2A)

- Show that for any triangular matrix *A*, we have that det(*A*) is equal to the product of the elements on the diagonal
- Let $A, B \in \mathbb{R}^{n \times n}$ and assume that B is non-singular
 - Show that $tr(B^{-1}AB) = tr(A)$
 - Show that $tr(B(B^tB)^{-1}B^t) = n$
- Let $A, B \in \mathbb{R}^{n \times n}$ be two non-singular matrices
 - Show that AB is then also invertible
 - Give an expression for $(AB)^{-1}$

Motivation Matrix algebra **The link with vector spaces** Application: solving a system of linear equations

• • • • • • • • • • • •

Outline

2 Calculus

3 Linear algebra

- Motivation
- Matrix algebra
- The link with vector spaces
- Application: solving a system of linear equations

4 Fundamentals of probability theory

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

A notion of vector spaces

- A set of vectors V is a vector space if
 - Addition of vectors is well-defined
 - $\forall a, b \in V : a + b \in V$
 - Scalar multiplication is well-defined
 - $\forall k \in \mathbb{R}, \forall a \in V : ka \in V$
- We can take linear combinations
 - $\forall k_1, k_2 \in \mathbb{R}, \forall a, b \in V : k_1a + k_2b \in V$
- E.g. \mathbb{R}^2 or more generally \mathbb{R}^n
- Counterexample R²₊

Motivation Matrix algebra **The link with vector spaces** Application: solving a system of linear equations

Linear (in)dependence

Let V be a vector space

 A set of vectors v₁,..., v_n ∈ V is *linear dependent* if one of the vectors can be written as a linear combination of the others

•
$$\exists k_1, \ldots, k_{n-1} \in \mathbb{R}$$
 : $v_n = k_1 v_1 + \cdots + k_{n-1} v_{n-1}$

• A set of vectors are *linear independent* if they are not linear dependent

• $\forall k_1, \ldots, k_n \in \mathbb{R} : k_1 v_1 + \cdots + k_n v_n = 0 \Rightarrow k_1 = \cdots = k_n = 0$

 In a vector space of dimension n, the number of linear independent vectors cannot be higher than n

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Linear (in)dependence

Example

• \mathbb{R}^2 is a vector space of dimension 2

•
$$v_1 = (1,0), v_2 = (1,2), v_3 = (-1,4)$$
 and $v_4 = (2,4)$

- $v_3 = -3v_1 + 2v_2$, so v_1, v_2, v_3 are linear dependent
- $v_4 = 2v_2$, so v_2 , v_4 are linear dependent
- v₁, v₂ are linear independent
- v₃ is linear independent

Motivation Matrix algebra **The link with vector spaces** Application: solving a system of linear equations

Link with matrices: rank

Let $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times k}$

- The row rank of A is the maximal number of linear independent rows of A
- The column rank of A is the maximal number of linear independent columns of A
- Rank of A = column rank of A = row rank of A
- Properties
 - $rank(A) \leq min(n, m)$
 - rank(AB) ≤ min(rank(A), rank(B))
 - $rank(A) = rank(A^{t}A) = rank(AA^{t})$
 - If n = m, then A has maximal rank if and only if det(A) $\neq 0$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

イロト イヨト イヨト イヨト

Link with matrices: rank

Example

• Let
$$A = \begin{pmatrix} 3 & 6 \\ -1 & -2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}$
• Then $AB = \begin{pmatrix} 21 & 0 \\ -7 & 0 \end{pmatrix}$, $BA = \begin{pmatrix} 1 & 2 \\ 10 & 20 \end{pmatrix}$
• $rank(A) = 1$ and $rank(B) = 2$

•
$$rank(AB) = 1$$

æ

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Exercises

• Let
$$A = \begin{pmatrix} 2 & 4 & 5 \\ 0 & 3 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

• Show in two ways that A has maximal rank

- Let $A, B \in \mathbb{R}^{n \times m}$
 - Show that there need not be any relation between rank(A + B), rank(A) and rank(B)
- Show that if *A* is invertible, then it needs to have a maximal rank

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Outline

- 2 Calculus
- 3 Linear algebra
 - Motivation
 - Matrix algebra
 - The link with vector spaces
 - Application: solving a system of linear equations

4 Fundamentals of probability theory

Introduction Calculus Linear algebra

Fundamentals of probability theory

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

System of linear equations

- Linear equations in the unknowns *x*₁,..., *x_m*
 - Not $x_1 x_2, x_m^2, ...$

Constraints hold with equality

• Not
$$2x_1 + 5x_2 \le 3$$

• E.g. $\begin{cases} 2x_1 + 3x_2 - x_3 = 5 \\ 3x_1 + 3x_2 - x_3 = 5 \end{cases}$

$$-x_1 + 4x_2 + x_3 = 0$$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Using matrix notation

- *m* unknowns: *x*₁,...,*x_m*
- *n* linear constraints: $a_{i1}x_1 + \cdots + a_{im}x_m = b_i$ with $a_{i1}, \ldots, a_{im}, b_i \in \mathbb{R}$ and $i = 1, \ldots, n$
- Ax = b

•
$$A = (a_{ij})_{i=1,...,n,j=1,...,m}$$

• $x = (x_i)_{i=1,...,n}$
• $b = (b_i)_{i=1,...,n}$

• Homogeneous if $b_i = 0$ for all i = 1, ..., n

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

• • • • • • • • • • • •

Solving these system

- Solve this by logical reasoning
 - Eliminate or substitute variables
 - · Can also be used for non-linear systems of equations
 - Can be cumbersome for larger systems
- Use matrix notation
 - Gaussian elimination of the augmented matrix (A|b)
 - Can be programmed
 - Only for systems of linear equations
 - Theoretical statements are possible

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

< ロ > < 同 > < 回 > < 回 >

Example

$$\begin{cases} -x_1 + 4x_2 = 0\\ 2x_1 + 3x_2 = 5 \end{cases}$$

•
$$x_1 = 4x_2 \Rightarrow 11x_2 = 5 \Rightarrow x_2 = \frac{5}{11}$$
 and $x_1 = \frac{20}{11}$
• $\begin{pmatrix} -1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 5 \end{pmatrix}$

• Take linear combinations of rows of the augmented matrix • Is the same as taking linear combinations of the equations • $\begin{pmatrix} -1 & 4 & | 0 \\ 2 & 3 & | 5 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 4 & | & 0 \\ 0 & 11 & | & 5 \end{pmatrix} \Rightarrow \begin{pmatrix} -1 & 0 & | & \frac{-20}{11} \\ 0 & 11 & | & 5 \end{pmatrix}$

Motivation Matrix algebra The link with vector spaces Application: solving a system of linear equations

Theoretical results

Consider the linear system Ax = b with $A \in \mathbb{R}^{n \times m}$

- This system has a solution if and only if rank(A) = rank(A|b)
 - $rank(A) \le rank(A|b)$ by definition
 - Is the (column) vector *b* a linear combination of the column vectors of *A*?
 - If rank(A) < rank(A|B), the answer is no
 - If rank(A) = rank(A|B), the answer is yes
- The solution is unique if rank(A) = rank(A|B) = m

n ≥ m

- There are ∞ many solutions if rank(A) = rank(A|B) < m
 - *n* < *m* or too many constraints are 'redundant'

Exercises

Solve the following systems of linear equations

•
$$\begin{cases} x_1 + 2x_2 + 3x_3 = 1\\ 3x_1 + 2x_2 + x_3 = 1 \end{cases} \text{ and } \begin{cases} x_1 - x_2 + x_3 = 1\\ 3x_1 + x_2 + x_3 = 0\\ 4x_1 + 2x_3 = -1 \end{cases}$$

• For which values of *k* does the following system of linear equations have a unique solution?

$$\begin{cases} x_1 + x_2 = 1\\ x_1 - kx_2 = 1 \end{cases}$$

- Consider the linear system Ax = b with $A \in \mathbb{R}^{n \times n}$
 - Show that this system has a unique solution if and only if A is invertible
 - Give a formula for this unique solution
- Show that homogeneous systems of linear equations always have a (possibly non-unique) solution

Outline

2 Calculus

3 Linear algebra

4 Fundamentals of probability theory

To be continued

Э.