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Mathematician who is doing research in Economics
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Practicalities about the course

12 hours on the mathematical part
Micael Castanheira: 12 hours on the economics part
Slides are available at MySBS and on
http://mathecosolvay.com/spma/
Schedule

Tuesday 17/9 and 24/9, 18.00-21.00, R42.2.107
Wednesday 18/9, 18.00-21.00, R42.2.103
Thursday 26/9, 18.00-21.00, R42.2.107

Course evaluation
Written exam in the beginning of November to verify if you
can apply the concepts discussed in class
Compulsory for students in Financial Markets
On a voluntary basis for students in Quantitative Finance
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Course objectives and content

Refresh some useful concepts needed in your other
coursework

No thorough or coherent study
Interested student: see references for relevant material

Content:
1 Calculus (derivatives, optimization, concavity)
2 Linear algebra (solving system of linear equations,

matrices, linear (in)dependence)
3 Fundamentals on probability (probability and cumulative

distributions, expectations of a random variable, correlation)
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Role of functions

Calculus = “the study of functions”
Functions allow to exploit mathematical tools in Economics
E.g. make consumption decisions

max U(x1, x2) s.t. p1x1 + p2x2 = Y
Characterization: x1 = f (p1,p1,Y )
Econometrics: estimate f
Allows to model/predict consumption behavior

Warning about identification
Causality: what is driving what?
Functional structure: what is driving the result?
Does the model allow to identify
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Derivatives

Marginal changes are important in Economics
The impact of a infinitesimally small change of one of the
variables
Comparative statistics: what is the impact of a price
change?
Optimization: what is the optimal consumption bundle?

Marginal changes are mostly studied by taking derivatives
Characterizing the impact depends on the function

f : D ⊆ Rn → Rk : (x1, . . . , xn) 7→ (y1, . . . yk ) = f (x1, . . . , xn)
We will always take k = 1
First look at n = 1 and then generalize
Note: N ⊂ Z ⊂ Q ⊂ R ⊂ C
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Functions of one variable: f : D ⊆ R→ R

df
dx

= f ′ = lim
∆x→0

f (x + ∆x)− f (x)

∆x

Limit of quotient of differences
If it exists, then it is called the derivative
f ′ is again a function
E.g. f (x) = 3x2 − 4
E.g. discontinuous functions, border of domain, f (x) = |x |
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Some important derivatives and rules

Let us abstract from specifying the domain D and assume that
c,n ∈ R0

If f (x) = c, then f ′(x) = 0
If f (x) = cxn, then f ′(x) = ncxn−1

If f (x) = cex , then f ′(x) = cex

If f (x) = c ln(x), then f (x) = c 1
x

(f (x)± g(x))′ = f ′(x)± g′(x)

(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) 6= f ′(x)g′(x)

( f (x)
g(x) )′ = f ′(x)g(x)−f (x)g′(x)

g(x)2
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Application: the link with marginal changes

By definition it is the limit of changes
Slope of the tangent line

Increasing or decreasing function (and thus impact)
Does the inverse function exist?

First order approximation in some point c
Based on expression for the tangent line in c
f (c + ∆x) ≈ f (c) + f ′(c)(∆x)
More general approximation: Taylor expansion
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Application: elasticities

The elasticity of f in x : f ′(x)x
f (x)

The limit of the quotient of changes in terms of percentage
Percentage change of the function: f (x+∆x)−f (x)

f (x)

Percentage change of the variable: ∆x
x

Quotient: f (x+∆x)−f (x)
∆x

x
f (x)

Is a unit independent informative number
E.g. the (price) elasticity of demand
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Application: comparative statics for a simple market
model

Demand: Q = 10− 4P
Supply: Q = 2 + αP
P∗ = 8

4+α and Q∗ = 8+10α
4+α

dP∗
dα = −8

(4+α)2 and dQ∗
dα = 32

(4+α)2

The elasticity of demand is −4P
10−4P
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Some exercises

Compute the derivative of the following functions (defined
on R+)

f (x) = 17x2 + 5x + 7
f (x) = −

√
x + 3

f (x) = 1
x2

f (x) = 17x2ex

f (x) = xln(x)
x2−4

Let f (x) : R→ R : x 7→ x2 + 5x .
Determine on which region f is increasing
Is f invertible?
Approximate f in 1 and derive an expression for the
approximation error
Compute the elasticity in 3 and 5
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The chain rule

Often we have to combine functions
If z = f (y) and y = g(x), then z = h(x) = f (g(x))

We have to be careful with the derivative
A small change in x causes a chain reaction

It changes y and this in turn changes z

That is why dz
dx = dz

dy
dy
dx = f ′(y)g′(x)

Can easily be generalized to compositions of more than two
functions
dz
dx = dz

dy
dy
du · · ·

dv
dx

E.g. if h(x) = ex2
, then h′(x) = ex2

2x
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Higher order derivatives

The derivative is again a function of which we can take
derivatives
Higher order derivatives describe the changes of the
changes
Notation

f ′′(x) or more generally f (n)(x)
d
dx ( df

dx ) or more generally dn

dxn f (x)

E.g. if f (x) = 5x3 + 2x , then f ′′′(x) = f (3)(x) = 30
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Application: concave and convex functions

f : D ⊂ Rn → R

f is concave
∀x , y ∈ D,∀λ ∈ [0,1] : f (λx + (1−λ)y) ≥ λf (x) + (1−λ)f (y)
If n = 1, ∀x ∈ D : f ′′(x) ≤ 0

f is convex
∀x , y ∈ D,∀λ ∈ [0,1] : f (λx + (1−λ)y) ≤ λf (x) + (1−λ)f (y)
If n = 1, ∀x ∈ D : f ′′(x) ≥ 0
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Application: concave and convex functions

Very popular and convenient assumptions in Economics
E.g. optimization

Sometimes intuitive interpretation
E.g. risk-neutral, -loving, -averse

Don’t be confused with a convex set
S is a set⇔ ∀x , y ∈ S,∀λ ∈ [0,1] : λx + (1− λ)y ∈ S
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Some exercises

Compute the first and second order derivative of the
following functions (defined on R+)

f (x) = −π
f (x) = −

√
5x + 3

f (x) = e−3x

f (x) = ln(5x)
f (x) = x3 − 6x2 + 17

Determine which of these functions are concave or convex
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Functions of more than one variable: f : D ⊆ Rn → R

Same applications in mind but now several variables
E.g. what is the marginal impact of changing x1, while
controlling for other variables?

Look at the partial impact: partial derivatives
∂
∂xi

f (x1, . . . , xn) = fxi =

lim∆xi→0
f (x1,...,xi +∆xi ,...,xn)−f (x1,...,xi ,...,xn)

∆xi
Same interpretation as before, but now fixing remaining
variables

E.g. f (x1, x2, x3) = 2x2
1 x2 − 5x3

∂
∂x1

f (x1, x2, x3) = 4x1x2
∂
∂x2

f (x1, x2, x3) = 2x2
1

∂
∂x3

f (x1, x2, x3) = −5

Bram De Rock Mathematical principles 22/65



Introduction
Calculus

Linear algebra
Fundamentals of probability theory

Motivation
Functions of one variable
Functions of more than one variable
Optimization

Partial derivative

Geometric interpretation: slope of tangent line in the xi
direction
Same rules hold
Higher order derivatives

∂2

∂x2
i
f (x1, . . . , xn)

∂2

∂xi xj
f (x1, . . . , xn) = ∂2

∂xj xi
f (x1, . . . , xn)

E.g. ∂2

∂x2
1
f (x1, x2, x3) = 4x2 and ∂2

∂x1x3
f (x1, x2, x3) = 0
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Some remarks

Gradient: ∇f (x1, . . . , xn) = ( ∂f
∂x1
, . . . , ∂f

∂xn
)

Chain rule: special case
x1 = g1(t), . . . , xn = gn(t) and f (x1, . . . , xn)
h(t) = f (x1, . . . , xn) = f (g1(t), . . . ,gn(t))
dh(t)

dt = h′(t) = ∂f (x1,...,xn)
∂x1

dx1
dt + · · ·+ ∂f (x1,...,xn)

∂xn

dxn
dt

E.g. f (x1, x2) = x1x2, g1(t) = et and g2(t) = t2

h′(t) = et t2 + et2t
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Some remarks

Slope of indifference curve of f (x1, x2)

Indifference curve: all (x1, x2) for which f (x1, x2) = C (with
C some give number)
Implicit function theorem: f (x1,g(x1)) = C
∂
∂x1

f (x1, x2) + ∂
∂x2

f (x1, x2) dg
dx1

= 0

Slope = −
∂

∂x1
f (x1,x2)

∂
∂x2

f (x1,x2)
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Some exercises

Compute the gradient and all second order partial
derivatives for the following functions (defined on R+)

f (x1, x2) = x2
1 − 2x1x2 + 3x2

2
f (x1, x2) = ln(x1x2)
f (x1, x2, x3) = ex1+2x2 − 3x1x3

Compute the marginal rate of substitution for the utility
function U(x1, x2) = xα1 xβ2
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Optimization: important use of derivatives

Many models in economics entail optimizing behavior
Maximize/Minimize objective subject to constraints

Characterize the points that solve these models
Note on Mathematics vs Economics

Profit = Revenue - Cost
Marginal revenue = marginal cost
Marginal profit = zero
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Optimization: formal problem

max /min f (x1, . . . , xn)

s.t .
g1(x1, . . . , xn) = c1

· · ·
gm(x1, . . . , xn) = cm

x1, . . . xn ≥ 0

Inequality constraints are also possible
Kuhn-Tucker conditions
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Necessity and sufficiency

Necessary conditions based on first order derivatives
Local candidate for an optimum

Sufficient conditions based on second order derivatives
Necessary condition is sufficient if

The constraints are convex functions
E.g. no constraints, linear constraints, . . .
The objective function is concave: global maximum is
obtained
The objective function is convex: global minimum is
obtained
Often the “real” motivation in Economics
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Necessary conditions

1 Free optimization
No constraints
f ′(x∗) = 0 if n = 1
∂
∂xi

f (x∗1 , . . . , x
∗
n ) = 0 for i = 1, . . . ,n

Intuitive given our geometric interpretation
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Necessary conditions

2 Optimization with positivity constraints
No gi constraints
On the boundary extra optima are possible
Often ignored: interior solutions
x∗i ≥ 0 for i = 1, . . . ,n
x∗i

∂
∂xi

f (x∗1 , . . . , x
∗
n ) = 0 for i = 1, . . . ,n

∂
∂xi

f (x∗1 , . . . , x
∗
n ) ≤ 0 for all i = 1, . . . ,n simultaneously OR

∂
∂xi

f (x∗1 , . . . , x
∗
n ) ≥ 0 for all i = 1, . . . ,n simultaneously
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Necessary conditions

3 Constrained optimization without positivity constraints
Define Lagrangian: L(x1, . . . , xn, λ1, . . . , λm) =
f (x1, . . . , xn)− λ1(g1(x1, . . . , xn))− · · · − λm(gm(x1, . . . , xn))
∂
∂xi

L(x∗1 , . . . , x
∗
n , λ
∗
1, . . . , λ

∗
m) = 0 for all i = 1, . . . ,n

∂
∂λj

L(x∗1 , . . . , x
∗
n , λ
∗
1, . . . , λ

∗
m) = 0 for all j = 1, . . . ,m

Alternatively: ∇f (x∗1 , . . . , x
∗
n ) =

λ∗1∇g1(x∗1 , . . . , x
∗
n ) + · · ·+ λ∗m∇gm(x∗1 , . . . , x

∗
n )

Some intuition: geometric interpretation
Lagrange multiplier = shadow price
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Application: utility maximization

max U(x1, x2) = xα1 x1−α
2 s.t . p1x1 + p2x2 = Y

L(x1, x2, λ1) = xα1 x1−α
2 − λ1(p1x1 + p2x2 − Y )

∂L
∂x1

= αxα−1
1 x1−α

2 − λ1p1 = 0
∂L
∂x2

= (1− α)xα1 x−α2 − λ1p2 = 0
∂L
∂λ1

= p1x1 + p2x2 − Y = 0

x∗1 = αY
p1
, x∗2 = (1−α)Y

p2
and λ∗1 = ( αp1

)α( (1−α)
p2

)(1−α)
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Some exercises

Find the optima for the following problems
max /min x3 − 12x2 + 36x + 8
max /min x3

1 − x3
2 + 9x1x2

min 2x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 − 15x1

max x1x2 s.t. x1 + 4x2 = 16
max yz + xz s.t. y2 + z2 = 1 and xz = 3

Add positivity constraints to the above unconstrained
problems and do the same

Bram De Rock Mathematical principles 35/65



Introduction
Calculus

Linear algebra
Fundamentals of probability theory

Motivation
Matrix algebra
The link with vector spaces
Application: solving a system of linear equations

Outline

1 Introduction

2 Calculus

3 Linear algebra
Motivation
Matrix algebra
The link with vector spaces
Application: solving a system of linear equations

4 Fundamentals of probability theory

Bram De Rock Mathematical principles 36/65



Introduction
Calculus

Linear algebra
Fundamentals of probability theory

Motivation
Matrix algebra
The link with vector spaces
Application: solving a system of linear equations

Motivation

Matrices allow to formalize notation
Useful in solving system of linear equations
Useful in deriving estimators in econometrics
Allows us to make the link with vector spaces
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Matrices

A = (aij)i=1,...,n;j=1,...,m =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
... · · ·

...
an1 an2 · · · anm


aij ∈ R and A ∈ Rn×m

n rows and m columns

Square matrix if n = m
Notable square matrices

Symmetric matrix: aij = aji for all i , j = 1, . . . ,n
Diagonal matrix: aij = 0 for all i , j = 1, . . . ,n and i 6= j
Triangular matrix: only non-zero elements above (or below)
the diagonal
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Matrix manipulations

Let A,B ∈ Rn×m and k ∈ R
Equality: A = B ⇔ aij = bij for all i , j = 1, . . . ,n
Scalar multiplication: kA = (kaij)i=1,...,n;j=1,...,m

Addition: A± B = (aij ± bij)i=1,...,n;j=1,...,m
Dimensions must be equal

Transposition: A′ = At = (aji)j=1,...,m;i=1,...,n
A ∈ Rn×m and At ∈ Rm×n

(A± B)t = At ± Bt

(kA)t = kAt

(At )t = A
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Matrix multiplication

Let A ∈ Rn×m and B ∈ Rm×k

AB = (
∑m

h=1 aihbhj)i=1,...,n;j=1,...,k

Multiply the row vector of A with the column vector of B
Aside: scalar/inner product and norm of vectors
Orthogonal vectors

Number of columns of A must be equal to number of rows
of B
AB 6= BA, even if both are square matrices
(AB)t = BtAt
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Example

Let A =

(
2 1
1 1

)
,B =

(
1 −1
0 2

)
and C =

(
1 2 3
3 2 1

)

At =

(
2 1
1 1

)
,Bt

(
1 0
−1 2

)
and C =

1 3
2 2
3 1


AB =

(
2 0
1 1

)
and BA =

(
1 0
2 2

)
AC =

(
5 6 7
4 4 4

)
(AB)t = BtAt =

(
2 1
0 1

)
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Exercises

Let A =

(
3 6
−1 −2

)
,B =

(
1 2
3 −1

)
,C =

(
1 1

)
and

D =

(
1 2 0 1
4 0 −3 1

)
Compute −3C,A + B,A− D and Dt

Compute AB,BA,AC,CA,AD and DA

Let A be a symmetric matrix, show then that At = A
A square matrix A is called idempotent if A2 = A

Verify which of the above matrices are idempotent
Find the value of α that makes the following matrix

idempotent:
(
−1 2
α 2

)
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Two numbers associated to square matrices: trace

Let A,B,C ∈ Rn×n

Trace(A) = tr(A) =
∑n

i=1 aii

Used in econometrics
Properties

tr(At ) = tr(A)
tr(A + B) = tr(A) + tr(B)
tr(cA) = ctr(A) for any c ∈ R
tr(AB) = tr(BA)
tr(ABC) = tr(BCA) = tr(CAB) 6= tr(ACB)(= tr(BAC) =
tr(CBA))
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Application: solving a system of linear equations

Two numbers associated to square matrices: trace

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
and

A + B =

(
4 8
2 −3

)
tr(A) = 1, tr(B) = 0 and tr(A + B) = 1
tr(AB) = 21 = tr(BA)
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Two numbers associated to square matrices:
determinant

Let A ∈ Rn×n

If n = 1, then det(A) = a11

If n = 2, then
det(A) = a11a22 − a12a21 = a11 det(a22)− a12 det(a21)

If n = 3, then det(A) = a11 det
(

a22 a23
a32 a33

)
−

a12 det
(

a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)
Can be generalized to any n
Works with columns too
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Two numbers associated to square matrices:
determinant

Let A,B ∈ Rn×n

det(At ) = det(A)

det(A + B) 6= det(A) + det(B)

det(cA) = c det(A) for any c ∈ R
det(AB) = det(BA)

A is non-singular (or regular) if A−1 exists
I.e. AA−1 = A−1A = In
In is a diagonal matrix with 1 on the diagonal
Does not always exist
det(A) 6= 0
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Two numbers associated to square matrices:
determinant

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
and

A + B =

(
4 8
2 −3

)
det(A) = 0, det(B) = −7 and det(A + B) = −28
det(AB) = 0 = det(BA)
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Exercises

Let A =

2 4 5
0 3 0
1 0 1


Compute tr(A) and det(−2A)

Show that for any triangular matrix A, we have that det(A)
is equal to the product of the elements on the diagonal
Let A,B ∈ Rn×n and assume that B is non-singular

Show that tr(B−1AB) = tr(A)
Show that tr(B(BtB)−1Bt ) = n

Let A,B ∈ Rn×n be two non-singular matrices
Show that AB is then also invertible
Give an expression for (AB)−1
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A notion of vector spaces

A set of vectors V is a vector space if
Addition of vectors is well-defined
∀a,b ∈ V : a + b ∈ V
Scalar multiplication is well-defined
∀k ∈ R,∀a ∈ V : ka ∈ V

We can take linear combinations
∀k1, k2 ∈ R,∀a,b ∈ V : k1a + k2b ∈ V

E.g. R2 or more generally Rn

Counterexample R2
+
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Linear (in)dependence

Let V be a vector space
A set of vectors v1, . . . , vn ∈ V is linear dependent if one of
the vectors can be written as a linear combination of the
others

∃k1, . . . kn−1 ∈ R : vn = k1v1 + · · ·+ kn−1vn−1

A set of vectors are linear independent if they are not linear
dependent

∀k1, . . . kn ∈ R : k1v1 + · · ·+ knvn = 0⇒ k1 = · · · = kn = 0

In a vector space of dimension n, the number of linear
independent vectors cannot be higher than n
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Linear (in)dependence

Example
R2 is a vector space of dimension 2
v1 = (1,0), v2 = (1,2), v3 = (−1,4) and v4 = (2,4)

v3 = −3v1 + 2v2, so v1, v2, v3 are linear dependent
v4 = 2v2, so v2, v4 are linear dependent
v1, v2 are linear independent
v3 is linear independent
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Link with matrices: rank

Let A ∈ Rn×m and B ∈ Rm×k

The row rank of A is the maximal number of linear
independent rows of A
The column rank of A is the maximal number of linear
independent columns of A
Rank of A = column rank of A = row rank of A
Properties

rank(A) ≤ min(n,m)
rank(AB) ≤ min(rank(A), rank(B))
rank(A) = rank(AtA) = rank(AAt )
If n = m, then A has maximal rank if and only if det(A) 6= 0
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Link with matrices: rank

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
rank(A) = 1 and rank(B) = 2
rank(AB) = 1
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Exercises

Let A =

2 4 5
0 3 0
1 0 1


Show in two ways that A has maximal rank

Let A,B ∈ Rn×m

Show that there need not be any relation between
rank(A + B), rank(A) and rank(B)

Show that if A is invertible, then it needs to have a maximal
rank
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System of linear equations

Linear equations in the unknowns x1, . . . , xm
Not x1x2, x2

m,...
Constraints hold with equality

Not 2x1 + 5x2 ≤ 3

E.g.
{

2x1 + 3x2 − x3 = 5
−x1 + 4x2 + x3 = 0
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Using matrix notation

m unknowns: x1, . . . , xm

n linear constraints: ai1x1 + · · ·+ aimxm = bi with
ai1, . . .aim,bi ∈ R and i = 1, . . . ,n
Ax = b

A = (aij )i=1,...,n,j=1,...,m
x = (xi )i=1,...,n
b = (bi )i=1,...,n

Homogeneous if bi = 0 for all i = 1, . . . ,n
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Solving these system

Solve this by logical reasoning
Eliminate or substitute variables
Can also be used for non-linear systems of equations
Can be cumbersome for larger systems

Use matrix notation
Gaussian elimination of the augmented matrix (A|b)
Can be programmed
Only for systems of linear equations
Theoretical statements are possible
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Example

{
−x1 + 4x2 = 0
2x1 + 3x2 = 5

x1 = 4x2 ⇒ 11x2 = 5⇒ x2 = 5
11 and x1 = 20

11(
−1 4
2 3

)(
x1
x2

)
=

(
0
5

)
Take linear combinations of rows of the augmented matrix

Is the same as taking linear combinations of the equations(
−1 4 |0
2 3 |5

)
⇒
(
−1 4 | 0
0 11 | 5

)
⇒
(
−1 0 | −20

11
0 11 | 5

)
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Theoretical results

Consider the linear system Ax = b with A ∈ Rn×m

This system has a solution if and only if
rank(A) = rank(A|b)

rank(A) ≤ rank(A|b) by definition
Is the (column) vector b a linear combination of the column
vectors of A?
If rank(A) < rank(A|B), the answer is no
If rank(A) = rank(A|B), the answer is yes

The solution is unique if rank(A) = rank(A|B) = m
n ≥ m

There are∞ many solutions if rank(A) = rank(A|B) < m
n < m or too many constraints are ‘redundant’
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Exercises

Solve the following systems of linear equations{
x1 + 2x2 + 3x3 = 1
3x1 + 2x2 + x3 = 1 and

 x1 − x2 + x3 = 1
3x1 + x2 + x3 = 0
4x1 + 2x3 = −1

For which values of k does the following system of linear
equations have a unique solution?{

x1 + x2 = 1
x1 − kx2 = 1

Consider the linear system Ax = b with A ∈ Rn×n

Show that this system has a unique solution if and only if A
is invertible
Give a formula for this unique solution

Show that homogeneous systems of linear equations
always have a (possibly non-unique) solution
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