Overview of some important distributions

X is a continuous random variable

Notation	Parameters	$x \in S$	$P d f$	$E(X)$	$\operatorname{Var}(X)$
$N\left(\mu, \sigma^{2}\right)$	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}$	$\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}$	μ	σ^{2}
$N(0,1)$	$/$	$x \in \mathbb{R}$	$\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}$	0	1
$E x p(\lambda)$	$\lambda \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}_{0}^{+}$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$
$U(a, b)$	$a, b \in \mathbb{R}$	$x \in[a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$
χ_{r}^{2}	$r \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}_{0}^{+}$	$\frac{2^{-r / 2}}{\Gamma(r / 2)} x^{\frac{r}{2}-1} e^{-\frac{x}{2}}$	r	$2 r$
t_{r}	$r \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}$	$\frac{\Gamma((r+1) / 2)}{\Gamma(r / 2) \sqrt{\pi r}}\left(1+\frac{x^{2}}{r}\right)^{-\frac{r+1}{2}}$	0	$\frac{r}{r-2}$
$F_{n, m}$	$n, m \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{R}_{0}^{+}$	$\frac{\Gamma((n+m) / 2)}{\Gamma(n / 2) \Gamma(m / 2)} n^{\frac{n}{2}} m^{\frac{m}{2}} \frac{x^{\frac{n}{2}-1}}{(m+n x)^{\frac{n+m}{2}}}$	$\frac{m}{m-2}$	$\frac{2 m^{2}(m+n-2)}{n(m-2)^{2}(m-4)}$

Some explanation:

- $N\left(\mu, \sigma^{2}\right)=$ the normal distribution
- Family of symmetric distributions
- Used a lot because of central limit theorem
- Standard normal distribution if $\mu=0$ and $\sigma=1$
- $\operatorname{Exp}(\lambda)=$ the exponential distribution
- Right skewed distribution
- Life expectancy of objects (machines, humans, ...)
- $U(a, b)=$ the uniform distribution
- Pick a random number between a and b
- $\chi_{r}^{2}=$ the chi-squared distribution with r degrees of freedom
- Used in statistical and econometrics test
- Let $X_{1}, \ldots X_{r} \sim N(0,1)$ and independent from each other, then $Z\left(=\sum_{i=1}^{r} X_{i}^{2}\right) \sim \chi_{r}^{2}$
- $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x$ is the Gamma function
- Right skewed distribution
- $t_{r}=$ the t -distribution or student distribution with r degrees of freedom
- Used in statistical and econometrics test
- Let $X_{1} \sim N(0,1), X_{2} \sim \chi_{r}^{2}$ and X_{1} and X_{2} be independent, then $Z\left(=\frac{X_{1}}{\sqrt{X_{2} / r}}\right) \sim t_{r}$
- Similar to the normal distribution but heavier tails
- In the limit the same as the normal distribution
- $F_{n, m}=$ the F-distribution with n and m degrees of freedom
- Used in statistical and econometrics test
- Let $X_{1} \sim \chi_{n}^{2}, X_{2} \sim \chi_{m}^{2}$ and X_{1} and X_{2} be independent, then $Z\left(=\frac{X_{1} / n}{X_{2} / m}\right) \sim F_{n, m}$
- Right skewed distribution

X is a discrete random variable

Notation	Parameters	$x \in S$	$\operatorname{Prob}(X=x)$	$E(X)$	$\operatorname{Var}(X)$
$B(1, p)$	$p \in] 0,1[$	$x \in\{0,1\}$	$p^{x}(1-p)^{1-x}$	p	$p(1-p)$
$B(n, p)$	$p \in] 0,1[, n \in \mathbb{N}$	$x \in\{0, \ldots, n\}$	$\binom{n}{k} p^{x}(1-p)^{n-x}$	$n p$	$n p(1-p)$
$\operatorname{Poisson}(\lambda)$	$\lambda \in \mathbb{R}_{0}^{+}$	$x \in \mathbb{N}$	$\frac{e^{-\lambda} \lambda^{x}}{x!}$	λ	λ
$U(N)$	$N \in \mathbb{N}_{0}$	$x \in\{1, \ldots, N\}$	$\frac{1}{N}$	$\frac{1+N}{2}$	$\frac{N^{2}-1}{12}$

Some explanation:

- $B(1, p)=$ the Bernoulli distribution
- Only two possible outcomes
- E.g. $1=$ success, $0=$ fail
- p is the probability for success
- E.g. flip a coin
- $B(n, p)=$ the binomial distribution
- n repetitions of a Bernoulli experiment with probability of success equal to p
$-\operatorname{Prob}(X=x)=$ what is the probability of having x times a 1 in the n repetitions
- E.g. flip a coin n times, what is the probability of having x tails
- Poisson $(\lambda)=$ the Poisson distribution
- The number of events in a given time frame
- Is the limiting distribution of the binomial distribution (i.e. the number of repetitions gets very big and the probability of success gets very small)
- E.g. the number of telephone calls per day
- $U(N)=$ the uniform distribution
- The discrete counterpart of the uniform distribution above

