Overview of some important distributions

Notation	Parameters	$x \in S$	Pdf	E(X)	Var(X)
$\boxed{N(\mu,\sigma^2)}$	$\mu \in \mathbb{R}, \sigma \in \mathbb{R}_0^+$	$x \in \mathbb{R}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	μ	σ^2
N(0,1)	/	$x \in \mathbb{R}$	$\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^2}$	0	1
$Exp(\lambda)$	$\lambda \in \mathbb{R}_0^+$	$x \in \mathbb{R}_0^+$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
U(a,b)	$a, b \in \mathbb{R}$	$x \in [a, b]$	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
χ^2_r	$r \in \mathbb{R}_0^+$	$x \in \mathbb{R}_0^+$	$\frac{2^{-r/2}}{\Gamma(r/2)}x^{\frac{r}{2}-1}e^{-\frac{x}{2}}$	r	2r
t_r	$r \in \mathbb{R}_0^+$	$x \in \mathbb{R}$	$\frac{\Gamma((r+1)/2)}{\Gamma(r/2)\sqrt{\pi r}} (1 + \frac{x^2}{r})^{-\frac{r+1}{2}}$	0	$\frac{r}{r-2}$
$F_{n,m}$	$n,m \in \mathbb{R}_0^+$	$x \in \mathbb{R}_0^+$	$\frac{\Gamma((n+m)/2)}{\Gamma(n/2)\Gamma(m/2)} n^{\frac{n}{2}} m^{\frac{m}{2}} \frac{x^{\frac{n}{2}-1}}{(m+nx)^{\frac{n+m}{2}}}$	$\frac{m}{m-2}$	$\frac{2m^2(m+n-2)}{n(m-2)^2(m-4)}$

\boldsymbol{X} is a continuous random variable

Some explanation:

- $N(\mu, \sigma^2)$ = the normal distribution
 - Family of symmetric distributions
 - Used a lot because of central limit theorem
 - Standard normal distribution if $\mu=0$ and $\sigma=1$
- $Exp(\lambda)$ = the exponential distribution
 - Right skewed distribution
 - Life expectancy of objects (machines, humans, ...)
- U(a,b) = the uniform distribution

- Pick a random number between a and b
- χ_r^2 = the chi-squared distribution with r degrees of freedom
 - Used in statistical and econometrics test
 - Let $X_1, \ldots X_r \sim N(0, 1)$ and independent from each other, then $Z(=\sum_{i=1}^r X_i^2) \sim \chi_r^2$
 - $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ is the Gamma function
 - Right skewed distribution
- t_r = the t-distribution or student distribution with r degrees of freedom
 - Used in statistical and econometrics test
 - Let $X_1 \sim N(0, 1)$, $X_2 \sim \chi_r^2$ and X_1 and X_2 be independent, then $Z(=\frac{X_1}{\sqrt{X_2/r}}) \sim t_r$
 - Similar to the normal distribution but heavier tails
 - In the limit the same as the normal distribution
- $F_{n,m}$ = the F-distribution with n and m degrees of freedom
 - Used in statistical and econometrics test
 - Let $X_1 \sim \chi_n^2$, $X_2 \sim \chi_m^2$ and X_1 and X_2 be independent, then $Z(=\frac{X_1/n}{X_2/m}) \sim F_{n,m}$
 - Right skewed distribution

Notation	Parameters	$x \in S$	Prob(X = x)	E(X)	Var(X)
B(1,p)	$p \in]0,1[$	$x \in \{0, 1\}$	$p^x(1-p)^{1-x}$	p	p(1-p)
B(n,p)	$p\in]0,1[,n\in\mathbb{N}$	$x \in \{0, \dots, n\}$	$\left(\begin{array}{c}n\\k\end{array}\right)p^x(1-p)^{n-x}$	np	np(1-p)
$Poisson(\lambda)$	$\lambda \in \mathbb{R}_0^+$	$x \in \mathbb{N}$	$rac{e^{-\lambda}\lambda^x}{x!}$	λ	λ
U(N)	$N \in \mathbb{N}_0$	$x \in \{1, \dots, N\}$	$\frac{1}{N}$	$\frac{1+N}{2}$	$\frac{N^2 - 1}{12}$

X is a discrete random variable

Some explanation:

- B(1, p) = the Bernoulli distribution
 - Only two possible outcomes
 - E.g. 1 =success, 0 =fail
 - p is the probability for success
 - E.g. flip a coin
- B(n, p) = the binomial distribution
 - n repetitions of a Bernoulli experiment with probability of success equal to p
 - Prob(X = x)= what is the probability of having x times a 1 in the n repetitions
 - E.g. flip a coin n times, what is the probability of having x tails

- $Poisson(\lambda) =$ the Poisson distribution
 - The number of events in a given time frame
 - Is the limiting distribution of the binomial distribution (i.e. the number of repetitions gets very big and the probability of success gets very small)
 - E.g. the number of telephone calls per day
- U(N) = the uniform distribution
 - The discrete counterpart of the uniform distribution above