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Bram De Rock
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E-mail: bderock@ulb.ac.be
Phone: 02 650 4214
Mathematician who is doing research in Economics
Homepage: http://www.revealedpreferences.org/bram.php
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Practicalities about the course

12 hours on the mathematical part
Micael Castanheira: 12 hours on the economics part
Slides are available at MySBS and on
http://mathecosolvay.com/spma/
Course evaluation

Written exam to verify if you can apply the concepts
discussed in class
Compulsory for students in Financial Markets
On a voluntary basis for students in Quantitative Finance
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Course objectives and content

Refresh some useful concepts needed in your other
coursework

No thorough or coherent study
Interested student: see references for relevant material

Content:
1 Calculus (functions, derivatives, optimization, concavity)
2 Financial mathematics (sequences, series)
3 Linear algebra (solving system of linear equations,

matrices, linear (in)dependence)
4 Fundamentals on probability (probability and cumulative

distributions, expectations of a random variable, correlation)
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Role of functions

Calculus = “the study of functions”
Functions allow to exploit mathematical tools in Economics
E.g. make consumption decisions

max U(x1, x2) s.t. p1x1 + p2x2 = Y
Characterization: x1 = f (p1,p2,Y )
Econometrics: estimate f
Allows to model/predict consumption behavior

Warning about identification
Causality: what is driving what?
Functional structure: what is driving the result?
Does the model allow to identify
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Some important functions of one variable

The straight line: y = A + Bx
A is the intercept or intersection with the y− axis
B is the slope
The impact of changes in x is constant
E.g. the effect on demand of a price change

Polynomial functions: y = Anxn + · · ·+ A0
Quadratic and cubic functions are special cases
Non-linear functions to capture more advance patterns due
to changes in x
E.g. profit as a function of sold quantities

Hyperbolic functions: y = A
x

The impact of changes in x goes to infinity around zero
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Some important functions of one variable

Exponential functions: ax and ex

Used as growth (a > 1) or decay curves (0 < a < 1)
Always positive
The relative growth/decay remains constant
E.g. the growth of capital at constant interest rate
Remember: axay = ax+y , (ax )y = axy and a0 = 1

Logarithmic functions: loga(x) or ln(x)

The inverse of the exponential function: y = loga(x) if and
only if ay = x
Can only be applied to positive numbers
Remember: loga(xy) = loga(x) + loga(y),
loga( x

y ) = loga(x)− loga(y), loga(xk ) = k loga(x) and
loga(1) = 0
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Derivatives

Marginal changes are important in Economics
The impact of a infinitesimally small change of one of the
variables
Comparative statistics: what is the impact of a price
change?
Optimization: what is the optimal consumption bundle?

Marginal changes are mostly studied by taking derivatives
Characterizing the impact depends on the function

f : D ⊆ Rn → Rk : (x1, . . . , xn) 7→ (y1, . . . yk ) = f (x1, . . . , xn)
We will always take k = 1
First look at n = 1 and then generalize
Note: N ⊂ Z ⊂ Q ⊂ R ⊂ C
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Functions of one variable: f : D ⊆ R→ R

df
dx

= f ′ = lim
∆x→0

f (x + ∆x)− f (x)

∆x

Limit of quotient of differences
If it exists, then it is called the derivative
f ′ is again a function
E.g. f (x) = 3x2 − 4
E.g. discontinuous functions, border of domain, f (x) = |x |
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Some important derivatives and rules

Let us abstract from specifying the domain D and assume that
c,n ∈ R0

If f (x) = c, then f ′(x) = 0
If f (x) = cxn, then f ′(x) = ncxn−1

If f (x) = cex , then f ′(x) = cex

If f (x) = c ln(x), then f (x) = c 1
x

(f (x)± g(x))′ = f ′(x)± g′(x)

(f (x)g(x))′ = f ′(x)g(x) + f (x)g′(x) 6= f ′(x)g′(x)

( f (x)
g(x) )′ = f ′(x)g(x)−f (x)g′(x)

g(x)2
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Application: the link with marginal changes

By definition it is the limit of changes
Slope of the tangent line

Increasing or decreasing function (and thus impact)
Does the inverse function exist?

First order approximation in some point c
Based on expression for the tangent line in c
f (c + ∆x) ≈ f (c) + f ′(c)(∆x)
More general approximation: Taylor expansion
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Application: elasticities

The elasticity of f in x : f ′(x)x
f (x)

The limit of the quotient of changes in terms of percentage
Percentage change of the function: f (x+∆x)−f (x)

f (x)

Percentage change of the variable: ∆x
x

Quotient: f (x+∆x)−f (x)
∆x

x
f (x)

Is a unit independent informative number
E.g. the (price) elasticity of demand
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Application: comparative statics for a simple market
model

Demand: P = 10
4 −

Q
4 or Q = 10− 4P

Supply: P = Q
α −

2
α or Q = 2 + αP

P∗ = 8
4+α and Q∗ = 8+10α

4+α

dP∗
dα = −8

(4+α)2 and dQ∗
dα = 32

(4+α)2

The (price) elasticity of demand is − −4P
10−4P
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Some exercises

Compute the derivative of the following functions (defined
on R+)

f (x) = 17x2 + 5x + 7
f (x) = −

√
x + 3

f (x) = 1
x2

f (x) = 17x2ex

f (x) = xln(x)
x2−4

Let f (x) : R→ R : x 7→ x2 + 5x .
Determine on which region f is increasing
Is f invertible?
Approximate f in 1 and derive an expression for the
approximation error
Compute the elasticity in 3 and 5
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The chain rule

Often we have to combine functions
If z = f (y) and y = g(x), then z = h(x) = f (g(x))

We have to be careful with the derivative
A small change in x causes a chain reaction

It changes y and this in turn changes z

That is why dz
dx = dz

dy
dy
dx = f ′(y)g′(x)

Don’t be confused: these are not fractions
Can easily be generalized to compositions of more than two
functions
dz
dx = dz

dy
dy
du · · ·

dv
dx

E.g. if h(x) = ex2
, then h′(x) = ex2

2x
I.e. z = ey and y = x2
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Higher order derivatives

The derivative is again a function of which we can take
derivatives
Higher order derivatives describe the changes of the
changes
Notation

f ′′(x) or more generally f (n)(x)
d
dx ( df

dx ) or more generally dn

dxn f (x)

E.g. if f (x) = 5x3 + 2x , then f ′′′(x) = f (3)(x) = 30
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Application: concave and convex functions

f : D ⊂ Rn → R

f is concave
∀x , y ∈ D,∀λ ∈ [0,1] : f (λx + (1−λ)y) ≥ λf (x) + (1−λ)f (y)
If n = 1, ∀x ∈ D : f ′′(x) ≤ 0

f is convex
∀x , y ∈ D,∀λ ∈ [0,1] : f (λx + (1−λ)y) ≤ λf (x) + (1−λ)f (y)
If n = 1, ∀x ∈ D : f ′′(x) ≥ 0
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Application: concave and convex functions

Very popular and convenient assumptions in Economics
E.g. optimization

Sometimes intuitive interpretation
E.g. risk-neutral, -loving, -averse

Don’t be confused with a convex set
S is a set⇔ ∀x , y ∈ S,∀λ ∈ [0,1] : λx + (1− λ)y ∈ S
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Some exercises

Compute the first and second order derivative of the
following functions (defined on R+)

f (x) = −π
f (x) = −

√
5x + 3

f (x) = e−3x

f (x) = ln(5x)
f (x) = x3 − 6x2 + 17

Determine which of these functions are concave or convex
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Functions of more than one variable: f : D ⊆ Rn → R

Same applications in mind but now several variables
E.g. what is the marginal impact of changing x1, while
controlling for other variables?

Look at the partial impact: partial derivatives
∂
∂xi

f (x1, . . . , xn) = fxi =

lim∆xi→0
f (x1,...,xi +∆xi ,...,xn)−f (x1,...,xi ,...,xn)

∆xi
Same interpretation as before, but now fixing remaining
variables

E.g. f (x1, x2, x3) = 2x2
1 x2 − 5x3

∂
∂x1

f (x1, x2, x3) = 4x1x2
∂
∂x2

f (x1, x2, x3) = 2x2
1

∂
∂x3

f (x1, x2, x3) = −5
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Partial derivative

Geometric interpretation: slope of tangent line in the xi
direction
Same rules hold
Higher order derivatives

∂2

∂x2
i
f (x1, . . . , xn)

∂2

∂xi xj
f (x1, . . . , xn) = ∂2

∂xj xi
f (x1, . . . , xn)

E.g. ∂2

∂x2
1
f (x1, x2, x3) = 4x2 and ∂2

∂x1∂x3
f (x1, x2, x3) = 0
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Some remarks

Gradient: ∇f (x1, . . . , xn) = ( ∂f
∂x1
, . . . , ∂f

∂xn
)

Chain rule: special case
x1 = g1(t), . . . , xn = gn(t) and f (x1, . . . , xn)
h(t) = f (x1, . . . , xn) = f (g1(t), . . . ,gn(t))
dh(t)

dt = h′(t) = ∂f (x1,...,xn)
∂x1

dx1
dt + · · ·+ ∂f (x1,...,xn)

∂xn

dxn
dt

E.g. f (x1, x2) = x1x2, g1(t) = et and g2(t) = t2

h′(t) = et t2 + et2t
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Some remarks

Slope of indifference curve of f (x1, x2)

Indifference curve: all (x1, x2) for which f (x1, x2) = C (with
C some give number)
Implicit function theorem: f (x1,g(x1)) = C
∂
∂x1

f (x1, x2) + ∂
∂x2

f (x1, x2) dg
dx1

= 0

Slope = −
∂

∂x1
f (x1,x2)

∂
∂x2

f (x1,x2)
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Some exercises

Compute the gradient and all second order partial
derivatives for the following functions (defined on R+)

f (x1, x2) = x2
1 − 2x1x2 + 3x2

2
f (x1, x2) = ln(x1x2)
f (x1, x2, x3) = ex1+2x2 − 3x1x3

Compute the marginal rate of substitution for the utility
function U(x1, x2) = xα1 xβ2
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Optimization: important use of derivatives

Many models in economics entail optimizing behavior
Maximize/Minimize objective subject to constraints

Characterize the points that solve these models
Note on Mathematics vs Economics

Profit = Revenue - Cost
Marginal revenue = marginal cost
Marginal profit = zero
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Optimization: formal problem

max /min f (x1, . . . , xn)

s.t .
g1(x1, . . . , xn) = c1

· · ·
gm(x1, . . . , xn) = cm

x1, . . . xn ≥ 0

Inequality constraints are also possible
Kuhn-Tucker conditions
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Necessity and sufficiency

Necessary conditions based on first order derivatives
Local candidate for an optimum

Sufficient conditions based on second order derivatives
Necessary condition is sufficient if

The constraints are convex functions
E.g. no constraints, linear constraints, . . .
The objective function is concave: global maximum is
obtained
The objective function is convex: global minimum is
obtained
Often the “real” motivation in Economics
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Necessary conditions

1 Free optimization
No constraints
f ′(x∗) = 0 if n = 1
∂
∂xi

f (x∗1 , . . . , x
∗
n ) = 0 for i = 1, . . . ,n

Intuitive given our geometric interpretation
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Necessary conditions

2 Optimization with positivity constraints
No gi constraints
On the boundary extra optima are possible
Often ignored: interior solutions
x∗i ≥ 0 for i = 1, . . . ,n
x∗i

∂
∂xi

f (x∗1 , . . . , x
∗
n ) = 0 for i = 1, . . . ,n

∂
∂xi

f (x∗1 , . . . , x
∗
n ) ≤ 0 for all i = 1, . . . ,n simultaneously OR

∂
∂xi

f (x∗1 , . . . , x
∗
n ) ≥ 0 for all i = 1, . . . ,n simultaneously
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Necessary conditions

3 Constrained optimization without positivity constraints
Define Lagrangian: L(x1, . . . , xn, λ1, . . . , λm) =
f (x1, . . . , xn)− λ1(g1(x1, . . . , xn))− · · · − λm(gm(x1, . . . , xn))
∂
∂xi

L(x∗1 , . . . , x
∗
n , λ
∗
1, . . . , λ

∗
m) = 0 for all i = 1, . . . ,n

∂
∂λj

L(x∗1 , . . . , x
∗
n , λ
∗
1, . . . , λ

∗
m) = 0 for all j = 1, . . . ,m

Alternatively: ∇f (x∗1 , . . . , x
∗
n ) =

λ∗1∇g1(x∗1 , . . . , x
∗
n ) + · · ·+ λ∗m∇gm(x∗1 , . . . , x

∗
n )

Some intuition: geometric interpretation
Lagrange multiplier = shadow price
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Application: utility maximization

max U(x1, x2) = xα1 x1−α
2 s.t . p1x1 + p2x2 = Y

L(x1, x2, λ1) = xα1 x1−α
2 − λ1(p1x1 + p2x2 − Y )

∂L
∂x1

= αxα−1
1 x1−α

2 − λ1p1 = 0
∂L
∂x2

= (1− α)xα1 x−α2 − λ1p2 = 0
∂L
∂λ1

= p1x1 + p2x2 − Y = 0

x∗1 = αY
p1
, x∗2 = (1−α)Y

p2
and λ∗1 = ( αp1

)α( (1−α)
p2

)(1−α)
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Some exercises

Find the optima for the following problems
max /min x3 − 12x2 + 36x + 8
max /min x3

1 − x3
2 + 9x1x2

min 2x2
1 + x1x2 + 4x2

2 + x1x3 + x2
3 − 15x1

max x1x2 s.t. x1 + 4x2 = 16
max x2x3 + x1x3 s.t. x2

2 + x2
3 = 1 and x1x3 = 3

Add positivity constraints to the above unconstrained
problems and do the same
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Motivation

Sequences and series are frequently used in Finance
E.g. a stream of dividends is a sequence of numbers
E.g. the price of a stock is the sum of all future dividends
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Sequences

A sequence is simply an infinite list of numbers
a1,a2,a3, . . .
E.g. 1,3,−

√
2, . . .

Often there is a systematic pattern
There is formula describing the sequence
E.g. 1, 1

2 ,
1
3 , . . . or an = 1

n
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Two useful types of sequences

Arithmetic sequence: an = a + (n − 1)d
a,a + d ,a + 2d , . . .
There is a constant difference between the terms
E.g. -3, -1, 1, 3, . . .
E.g. weekly evolution of the stock if the firm does not sell
and produces d units every week

Geometric sequence an = arn − 1
a,ar ,ar2, . . .
The ratio between the terms is constant
E.g. 7, 14, 28, . . .
E.g. yearly evolution of capital at constant interest rate
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Series

A series is the sum of all the terms of a sequence
This can be a finite number or an infinite number

E.g. 1 + 2 + 3 + · · · = +∞
E.g. 1 + 1

2 + 1
3 + · · · = +∞

E.g. 1 + 1
2 + 1

4 + · · · = 2
Partial sum SN is the sum of the first N elements of the
sequence

Finite version of the series
Evolves to the series if N gets bigger
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Two useful types of series

Arithmetic series
Sum of arithmetic sequence: an = a + (n − 1)d
Partial sum:
SN = Na + (1 + 2 + · · ·+ N − 1)d = Na + N(N−1)

2 d
Series is useless: 0 or ±∞, depending on d and a

Geometric series
Sum of geometric sequence: an = arn−1

Partial sum: SN = a(1 + r + · · ·+ rN−1) = a 1−rN

1−r
Series: a

1−r if |r | < 1, else ±∞
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Exercises

Consider the sequence 26,22,18, . . .
Give the sum of the first 8 elements
Give a formula for the partial sums

Consider the sequence 1
3 ,

1
9 ,

1
27 , . . .

Give the sum of the first 8 elements
Give a formula for the partial sums

Let an be an arithmetic sequence for which the sum of the
first 12 terms is 222 and the sum of the first 5 terms is 40.
What is the general formula of this sequence?
Let an be a geometric sequence for which the fourth term
is 56 and the sixth term is 7

8 . What is the series of this
sequence?
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Compounded interest

Compound interest on yearly basis
Assume capital K and yearly interest rate of r%
You receive interests only at the end of the year
Capital after N years: K (1 + r)N

I.e. interest on interests also matter
Interest is compounded several times per year

m times per year you receive interests
Of course the interest rate is adapted: r

m
Capital after one year: K (1 + r

m )m

More capital since more interests on interests
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Compounded interest

Interest is compounded continuously
Often used in Macro
m goes to infinity
Capital after one year: Ker

Note Ker > K (1 + r
m )m > K (1 + r)

Nominal interest rate is r
Annual percentage rate: (1 + r

m )m − 1 or er − 1
Depreciation calculations are very similar

Depreciation rate r
Use 1− r instead of 1 + r
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Net present value

1000 Euro in 2014 does not have the same value as 1000
Euro in 2024
We need to discount future amounts to make them
comparable

We use compounded interest to do this
Example

Assume interest rate at saving accounts is 2% and you
receive interests on a yearly basis
Capital K after 10 years: K (1.02)10

820,35(1.02)10 = 1000 or 820.35 = 1000
(1.02)10

The discounted value of the 1000 Euro of 2024 is 820.35
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Evaluating investments

Assume that an investment of K Euro will give a yearly
return of 1000 Euros for the next 5 years
For which K is this an interesting investment if the interest
rate is 2%

Answer
We need to discount the 1000 Euro of every year
1000
1.02 + 1000

(1.02)2 + · · ·+ 1000
(1.02)5 = 1000

1.02 (1 + 1
1.02 + · · ·+ 1

(1.02)4 )

Geometric sequence/series:
1000
1.02

1−( 1
1.02 )5

1− 1
1.02

= 1000 1−( 1
1.02 )5

0.02 = 4713.46
So K should be less than 4713.46 Euro to make this
investment profitable
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Exercises

Consider a stock or bond that gives you a yearly dividend of 10
Euro

Assume that you receive dividends for 10 years, what is
the price you want to pay for this stock/bond if the interest
rate is 2% (compounded yearly)?
Assume now that you receive dividends forever, what is
then the price you want to pay?
Due to uncertainty, you want to add a risk premium of 2%,
meaning that you now discount with 4% instead of 2%.
What is the impact on both prices?
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Motivation

Matrices allow to formalize notation
Useful in solving system of linear equations
Useful in deriving estimators in econometrics
Allows us to make the link with vector spaces
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Matrices

A = (aij)i=1,...,n;j=1,...,m =


a11 a12 · · · a1m
a21 a22 · · · a2m

...
... · · ·

...
an1 an2 · · · anm


aij ∈ R and A ∈ Rn×m

n rows and m columns

Square matrix if n = m
Notable square matrices

Symmetric matrix: aij = aji for all i , j = 1, . . . ,n
Diagonal matrix: aij = 0 for all i , j = 1, . . . ,n and i 6= j
Triangular matrix: only non-zero elements above (or below)
the diagonal
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Matrix manipulations

Let A,B ∈ Rn×m and k ∈ R
Equality: A = B ⇔ aij = bij for all i , j = 1, . . . ,n
Scalar multiplication: kA = (kaij)i=1,...,n;j=1,...,m

Addition: A± B = (aij ± bij)i=1,...,n;j=1,...,m
Dimensions must be equal

Transposition: A′ = At = (aji)j=1,...,m;i=1,...,n
A ∈ Rn×m and At ∈ Rm×n

(A± B)t = At ± Bt

(kA)t = kAt

(At )t = A
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Matrix multiplication

Let A ∈ Rn×m and B ∈ Rm×k

AB = (
∑m

h=1 aihbhj)i=1,...,n;j=1,...,k

Multiply the row vector of A with the column vector of B
Aside: scalar/inner product and norm of vectors
Orthogonal vectors

Number of columns of A must be equal to number of rows
of B
AB 6= BA, even if both are square matrices
(AB)t = BtAt
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Example

Let A =

(
2 1
1 1

)
,B =

(
1 −1
0 2

)
and C =

(
1 2 3
3 2 1

)

At =

(
2 1
1 1

)
,Bt

(
1 0
−1 2

)
and Ct =

1 3
2 2
3 1


AB =

(
2 0
1 1

)
and BA =

(
1 0
2 2

)
AC =

(
5 6 7
4 4 4

)
(AB)t = BtAt =

(
2 1
0 1

)
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Exercises

Let A =

(
3 6
−1 −2

)
,B =

(
1 2
3 −1

)
,C =

(
1 1

)
and

D =

(
1 2 0 1
4 0 −3 1

)
Compute −3C,A + B,A− D and Dt

Compute AB,BA,AC,CA,AD and DA

Let A be a symmetric matrix, show then that At = A
A square matrix A is called idempotent if A2 = A

Verify which of the above matrices are idempotent
Find the value of α that makes the following matrix

idempotent:
(
−1 2
α 2

)
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Two numbers associated to square matrices: trace

Let A,B,C ∈ Rn×n

Trace(A) = tr(A) =
∑n

i=1 aii

Used in econometrics
Properties

tr(At ) = tr(A)
tr(A± B) = tr(A)± tr(B)
tr(cA) = ctr(A) for any c ∈ R
tr(AB) = tr(BA)
tr(ABC) = tr(BCA) = tr(CAB)
6= tr(ACB)(= tr(BAC) = tr(CBA))
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Two numbers associated to square matrices: trace

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
and

A + B =

(
4 8
2 −3

)
tr(A) = 1, tr(B) = 0 and tr(A + B) = 1
tr(AB) = 21 = tr(BA)
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Two numbers associated to square matrices:
determinant

Let A ∈ Rn×n

If n = 1, then det(A) = a11

If n = 2, then
det(A) = a11a22 − a12a21 = a11 det(a22)− a12 det(a21)

If n = 3, then det(A) = a11 det
(

a22 a23
a32 a33

)
−

a12 det
(

a21 a23
a31 a33

)
+ a13 det

(
a21 a22
a31 a32

)
Can be generalized to any n
Works with columns too
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Two numbers associated to square matrices:
determinant

Let A,B ∈ Rn×n

det(At ) = det(A)

det(A± B) 6= det(A)± det(B)

det(cA) = cn det(A) for any c ∈ R
det(AB) = det(BA)

A is non-singular (or regular) if A−1 exists
I.e. AA−1 = A−1A = In
In is a diagonal matrix with 1 on the diagonal
Does not always exist
det(A) 6= 0
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Two numbers associated to square matrices:
determinant

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
and

A + B =

(
4 8
2 −3

)
det(A) = 0, det(B) = −7 and det(A + B) = −28
det(AB) = 0 = det(BA)
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Exercises

Let A =

2 4 5
0 3 0
1 0 1


Compute tr(A) and det(−2A)

Show that for any triangular matrix A, we have that det(A)
is equal to the product of the elements on the diagonal
Let A,B ∈ Rn×n and assume that B is non-singular

Show that tr(B−1AB) = tr(A)
Show that tr(B(BtB)−1Bt ) = n

Let A,B ∈ Rn×n be two non-singular matrices
Show that AB is then also invertible
Give an expression for (AB)−1
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A notion of vector spaces

A set of vectors V is a vector space if
Addition of vectors is well-defined
∀a,b ∈ V : a + b ∈ V
Scalar multiplication is well-defined
∀k ∈ R,∀a ∈ V : ka ∈ V

We can take linear combinations
∀k1, k2 ∈ R,∀a,b ∈ V : k1a + k2b ∈ V

E.g. R2 or more generally Rn

Counterexample R2
+
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Linear (in)dependence

Let V be a vector space
A set of vectors v1, . . . , vn ∈ V is linear dependent if one of
the vectors can be written as a linear combination of the
others

∃k1, . . . kn−1 ∈ R : vn = k1v1 + · · ·+ kn−1vn−1

A set of vectors are linear independent if they are not linear
dependent

∀k1, . . . kn ∈ R : k1v1 + · · ·+ knvn = 0⇒ k1 = · · · = kn = 0

In a vector space of dimension n, the number of linear
independent vectors cannot be higher than n
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Linear (in)dependence

Example
R2 is a vector space of dimension 2
v1 = (1,0), v2 = (1,2), v3 = (−1,4) and v4 = (2,4)

v3 = −3v1 + 2v2, so v1, v2, v3 are linear dependent
v4 = 2v2, so v2, v4 are linear dependent
v1, v2 are linear independent
v3 is linear independent
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Link with matrices: rank

Let A ∈ Rn×m and B ∈ Rm×k

The row rank of A is the maximal number of linear
independent rows of A
The column rank of A is the maximal number of linear
independent columns of A
Rank of A = column rank of A = row rank of A
Properties

rank(A) ≤ min(n,m)
rank(AB) ≤ min(rank(A), rank(B))
rank(A) = rank(AtA) = rank(AAt )
If n = m, then A has maximal rank if and only if det(A) 6= 0
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Link with matrices: rank

Example

Let A =

(
3 6
−1 −2

)
and B =

(
1 2
3 −1

)
Then AB =

(
21 0
−7 0

)
, BA =

(
1 2
10 20

)
rank(A) = 1 and rank(B) = 2
rank(AB) = 1
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Exercises

Let A =

2 4 5
0 3 0
1 0 1


Show in two ways that A has maximal rank

Let A,B ∈ Rn×m

Show that there need not be any relation between
rank(A + B), rank(A) and rank(B)

Show that if A is invertible, then it needs to have a maximal
rank
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System of linear equations

Linear equations in the unknowns x1, . . . , xm
Not x1x2, x2

m,...
Constraints hold with equality

Not 2x1 + 5x2 ≤ 3

E.g.
{

2x1 + 3x2 − x3 = 5
−x1 + 4x2 + x3 = 0
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Using matrix notation

m unknowns: x1, . . . , xm

n linear constraints: ai1x1 + · · ·+ aimxm = bi with
ai1, . . .aim,bi ∈ R and i = 1, . . . ,n
Ax = b

A = (aij )i=1,...,n,j=1,...,m
x = (xi )i=1,...,m
b = (bi )i=1,...,n

Homogeneous if bi = 0 for all i = 1, . . . ,n
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Solving a system of linear equations

Solve this by logical reasoning
Eliminate or substitute variables
Can also be used for non-linear systems of equations
Can be cumbersome for larger systems

Use matrix notation
Gaussian elimination of the augmented matrix (A|b)
Can be programmed
Only for systems of linear equations
Theoretical statements are possible
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Example

{
−x1 + 4x2 = 0
2x1 + 3x2 = 5

x1 = 4x2 ⇒ 11x2 = 5⇒ x2 = 5
11 and x1 = 20

11(
−1 4
2 3

)(
x1
x2

)
=

(
0
5

)
Take linear combinations of rows of the augmented matrix

Is the same as taking linear combinations of the equations(
−1 4 |0
2 3 |5

)
⇒
(
−1 4 | 0
0 11 | 5

)
⇒
(
−1 0 | −20

11
0 11 | 5

)
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Theoretical results

Consider the linear system Ax = b with A ∈ Rn×m

This system has a solution if and only if
rank(A) = rank(A|b)

rank(A) ≤ rank(A|b) by definition
Is the (column) vector b a linear combination of the column
vectors of A?
If rank(A) < rank(A|B), the answer is no
If rank(A) = rank(A|B), the answer is yes

The solution is unique if rank(A) = rank(A|B) = m
n ≥ m

There are∞ many solutions if rank(A) = rank(A|B) < m
n < m or too many constraints are ‘redundant’
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Exercises

Solve the following systems of linear equations{
x1 + 2x2 + 3x3 = 1
3x1 + 2x2 + x3 = 1 and

 x1 − x2 + x3 = 1
3x1 + x2 + x3 = 0
4x1 + 2x3 = −1

For which values of k does the following system of linear
equations have a unique solution?{

x1 + x2 = 1
x1 − kx2 = 1

Consider the linear system Ax = b with A ∈ Rn×n

Show that this system has a unique solution if and only if A
is invertible
Give a formula for this unique solution

Show that homogeneous systems of linear equations
always have a (possibly non-unique) solution
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Motivation

In econometrics/statistics we want
To draw conclusions about a random variable X

Data Generating Process
Determines the random outcome for X
Possibly an infinite population
E.g. X is the income of a person

And we can only use a limited set of observations
Due to randomness there is always uncertainty
Same holds because of the finite set of observations
E.g. we observe the income of 1000 persons
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Motivation

We will recall the basic notations and tools
Allows to quantify the uncertainty
Refreshes some of the important concepts
E.g. with 95% certainty we can conclude that the average
income for the population lies between 1900 and 2100
Euros
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Random variable

Let X be a random variable
The outcome of a random data generating process
Univariate versus multivariate
Discrete versus continuous

Indivisible or countably infinite
Probabilities are associated to the possible outcomes

Prob(X = x) or Prob(a ≤ X ≤ b) with a,b ∈ R
Probability distributions f (x)

Examples
The outcome of the throw of a dice
The temperature on September 24
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Probability density function (pdf)

Let X be a discrete random variable
The probability density function is a function satisfying

f (x) = Prob(X = x)
0 ≤ Prob(X = x) ≤ 1∑

x f (x) = 1
Formalizes our intuitive notion of probability

Has a direct interpretation
Probabilities are positive
Total probability cannot exceed 1
E.g. pick a random number out of {1,2,3}
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Probability density function (pdf)

Let X be a continuous random variable
The probability density function f (x) is a function satisfying

Prob(a ≤ x ≤ b) =
∫ b

a f (x)dx
f (x) ≥ 0∫ +∞
−∞ f (x)dx = 1

Extends our machinery to the continuous case
Because of indivisibility we have that Prob(X = x) = 0
Probabilities are surfaces (and positive by construction)
E.g. pick a random number in [0,1]
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Cumulative distribution function (cdf)

X is a discrete random variable
F (x) =

∑
X≤x f (X ) =

∑
X≤x Prob(X = x) = Prob(X ≤ x)

X is a continuous random variable
F (x) =

∫ x
−∞ f (t)dt

f (x) = dF (x)
dx

Note
0 ≤ F (x) ≤ 1
F is an increasing function
Prob(a ≤ X ≤ b) = F (b)− F (a)
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Quantile function

Quantile function Q is the “inverse function” of the cdf
This function defines the relative position in the distribution

E.g. first quartile, second decile, median, . . .
X is a continuous random variable

Q(p) = x if F (x) = p
Or if F (x) = p, then Prob(X ≤ Q(p)) = p

X is a discrete random variable
The cdf is a step function in the discrete case
If F (x) = p, then Q(p) is the smallest value for which
Prob(X ≤ Q(p)) ≥ p
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Measure of central tendacy

The expected value or mean
E(X ) =

∑
x xf (x) if X is discrete

E(X ) =
∫

x xf (x)dx if X is continuous
It the value that we expect on average

The median is Med(X ) = Q(0.5)

For symmetric distributions: mean ≈ median
For right skewed distributions : mean > median
For left skewed distributions: mean < median
Less sensitive for outliers

The mode is arg max f (x)

The value of X that has the highest probability of occurring
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Measure of central tendacy

Let g be an increasing function
E(g(X )) 6= g(E(X ))
Med(g(X )) = g(Med(X ))
The mode becomes g(mode)

Only exception: g(x) = a + bx
Then E(g(X )) = g(E(X )) = a + bE(X )

Example
Pick a random number from {1,2,3}
g(x) = x2

E(X ) = 2, Med(X ) = 2 and mode = {1,2,3}
E(g(X )) = 14

3 , Med(X ) = 2 and mode = {1,4,9}
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Measure of dispersion

The variance
Var(X ) = E((X − E(X ))2) =

∑
x (x − E(X ))2f (x) if X is

discrete
Var(X ) =

∫
x (x − E(X ))2f (x)dx if X is continuous

How far is x from the average
Squared deviations since too small or too big

Standard deviation = (Var(X ))
1
2

The inter quartile range: Q(0.75)−Q(0.25)

Less sensitive for outliers
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Measure of dispersion

Let g be an increasing function
Var(g(X )) 6= g(Var(X ))

However if g(x) = a + bx , then Var(g(X )) = b2Var(X )

Squared deviations
Adding a constant does not change dispersion

Example
Pick a random number from {1,2,3}
g(x) = x2

Var(X ) = 2
3

Var(g(X )) = 98
3
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Central moments

Let X be a random variable
Var(X ) is an example of a central moment of X
µr = E((x − E(X ))r )

Related to skewness if r = 3
Is zero for symmetric distributions
Puts less weight on outcomes that are closer to E(X )

Kurtosis if r = 4
Measure for the thickness of the tails
Puts more weight on the extreme observations
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Exercises

Compute the first four central moments for the following
random variables

X ∈ {0,1} and f (X = 0) = 1
4

X ∈ {a} and f (X = a) = 1, with a ∈ R
Show that Prob(a < X < b) = Prob(a < X ≤ b)
= Prob(a ≤ X ≤ b) if X is a continuous variable
Argue that the same does not need to hold if X is discrete
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Some remarks

See the document overview_distributions.pdf for some
important distributions
Two more important functions for a continuous random
variable X

The survival function: S(x) = 1− F (x)
E.g. x stands for time until transition
The hazard function: h(x) = f (x)

S(x)

E.g. x stands for duration of an event
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Importance of multivariate setting

In principle same machinery
Probability density function, expected value, . . .
But relative position does not exist in general
Slightly more technical

Allows to formally study new concepts
The independence of random variables
More general, the correlation between random variables
But also marginal and conditional pdf’s

We will focus on the bivariate case
Everything can of course be generalized
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Two discrete random variables

Let X and Y be two discrete random variables
E.g. X = male/female (i.e. X ∈ {0,1}) and Y = score at
the exam (i.e. Y ∈ {1,2, . . . ,20})
The joint pdf f (x , y)

f (x , y) = Prob(X = x ,Y = y)
f (x , y) ≥ 0∑

x
∑

y f (x , y) = 1

The joint cdf F (x , y)

F (x , y) = Prob(X ≤ x ,Y ≤ y) =
∑

X≤x
∑

Y≤y f (x , y)

Expected generalizations
Quantile function is not well-defined
Relative position? Inverse function?
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Two continuous random variables

Let X and Y be two continuous random variables
E.g. X = temperature on September 24 and Y = liters of
rain per square meter on September 24
The joint pdf f (x , y)

f (x , y) = Prob(a ≤ x ≤ b, c ≤ y ≤ d)
f (x , y) ≥ 0∫

x

∫
y f (x , y)dydx = 1

The joint cdf F (x , y)

F (x , y) = Prob(X ≤ x ,Y ≤ y) =
∫ x
−∞

∫ y
−∞ f (s, t)dtds
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The marginal pdf

Let X and Y be two random variables
The pdf for one variable, irrespective of the value of the
other variable
E.g. the pdf for the exam score, irrespective of the sex of
the student

The probability of having 12 is the sum of the probability of
a female having 12 and a male having 12

Formally
E.g. fX (x) =

∑
y Prob(x = X , y = Y ) if X and Y are

discrete
E.g. fY (y) =

∫
x f (x , y)dx if X and Y are continuous
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Independent variables

Let X and Y be two random variables
The marginal distributions allow us to define independence
X and Y are independent if and only if f (x , y) = fX (x)fY (y)
for all values of x and y
Remark that for dependent variables a similar relation
between the joint pdf and the marginal pdf’s does not exist
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Independent variables

Example
E.g. X = male/female and Y = score at the exam
Prob(X = Male) = 0.4 (= fX (Male))

Prob(X = Female) = 0.6 (= fX (Female))

Prob(Y = 12) = 0.3 (= fY (12))

Prob(X = Male,Y = 12) = 0.10 6= 0.4× 0.3
Prob(X = Female,Y = 12) = 0.20 6= 0.6× 0.3
There is dependence

E.g. females have a higher probability of obtaining 12
Since 0.20 > 0.18, not since 0.20 > 0.10!
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The conditional pdf

Let X and Y be two random variables
The pdf of one variable for a given value of the other
variable
E.g. what is the probability of having 12, conditional on
being female

Formally: f (y |x) = f (x ,y)
fX (x)
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The conditional pdf

Let X and Y be two random variables

Let X and Y be independent
Then f (y |x) = fY (y) and f (x |y) = fX (x)
Conditioning on x or y does not give extra information

Reformulating the above:
f (x , y) = f (y |x)fX (x) = f (x |y)fY (y)
This is the factorization of the joint distribution that takes
dependence into account
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The conditional pdf

Example
E.g. X = male/female and Y = score at the exam
Prob(X = Male) = 0.4 and Prob(X = Female) = 0.6
Prob(Y = 12) = 0.3
Prob(X = Male,Y = 12) = 0.10 and
Prob(X = Female,Y = 12) = 0.20
Prob(Y = 12|X = Male) = 0.10

0.4 = 0.25

Prob(Y = 12|X = Female) = 0.20
0.6 = 0.33

Prob(X = Female|Y = 12) = 0.20
0.3 = 0.66

This is formally confirming our previous intuitive conclusion
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Expected value

The marginal and conditional pdf allow to compute the
same numbers as before
Expected value or mean

The expected value for X , irrespective of the value of Y
E(X ) =

∑
x xfX (x) =

∑
x
∑

y xf (x , y) if X and Y are
discrete
E(Y ) =

∫
y yfY (y)dy =

∫
x

∫
y yf (x , y)dydx if X and Y are

continuous
Conditional expected value or mean

The expected value for X , conditional on the value of Y
E(X |Y ) =

∑
x xf (x |y) if X and Y are discrete

E(Y |X ) =
∫

y yf (y |x)dy if X and Y are continuous
Regression: y = E(Y |X ) + (y − E(Y |X )) = E(Y |X ) + ε
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Variance

Variance
The dispersion of X , irrespective of the value of Y
Var(X ) =

∑
x (x − E(X ))2fX (x) =

∑
x
∑

y (x − E(X ))2f (x , y)
if X and Y are discrete
E(Y ) =

∫
y (y − E(Y ))2fY (y)dy =∫

x

∫
y (y − E(Y ))2f (x , y)dydx if X and Y are continuous

Conditional variance
The dispersion of X , conditional on the value of Y
Var(X |Y ) =

∑
x (x − E(X ))2f (x |y) if X and Y are discrete

Var(Y |X ) =
∫

y (y − E(Y ))2f (y |x)dy if X and Y are
continuous
Homoscedasticity: the conditional variance does not vary
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Covariance and correlation

Let X and Y be two random variables
Summarize the dependence between X and Y in a single
number
The covariance of X and Y

Cov(X ,Y ) = E((X − E(X ))(Y − E(Y )))
Compare to Var(X ) = E((X − E(X ))2)
A positive/negative number indicates a positive/negative
dependence
Cov(X ,Y ) = 0 if X and Y are independent
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Covariance and correlation

Let X and Y be two random variables
Only sign of Cov(X ,Y ) has a meaning

Rescaling of X and Y changes Cov(X ,Y ) but of course not
their dependence

Correlation
r(X ,Y ) = ρ(X ,Y ) = Cov(X ,Y )

(Var(X))
1
2 (Var(X))

1
2

−1 ≤ r(X ,Y ) ≤ 1
Both size and sign have a meaning
This is not about causality!
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Some remarks

Let X and Y be two random variables and a,b, c,d ∈ R
E(aX + bY + c) = aE(X ) + bE(Y ) + c

Similar as before and not influenced by (in)dependence
Var(aX + bY + c) = a2Var(X ) + b2Var(Y ) + 2abCov(X ,Y )

Extra term capturing the dependence of X and Y

Cov(aX + bY , cX + dY ) =
acVar(X ) + bdVar(Y ) + (ad + bc)Cov(X ,Y )

Let X and Y be independent and g1 and g2 two functions
E(g1(X )g2(Y )) = E(g1(X ))E(g2(Y ))
Independence is crucial
In the above properties the linearity is crucial
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A final example: the bivariate normal distribution

The joint distribution of two variables that are normally
distributed
The joint pdf:

f (x , y) =
1

2π
√

det(Σ)
e−

1
2 (x−µX ,y−µY )Σ−1(x−µX ,y−µY )t

µX and µY are the expected values of X and Y

Σ =

(
σ2

X ρσXσY
ρσXσY σ2

Y

)
is the covariance matrix

σX and σY are the standard deviations of X and Y
ρ is the correlation

Bram De Rock Mathematical principles 111/113



Introduction
Calculus

Financial mathematics
Linear algebra

Fundamentals of probability theory

Motivation
Univariate: one random variable
Multivariate: several random variables

A final example: the bivariate normal distribution

Expected generalization
Same structure as in the univariate setting
X and Y can be dependent
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A final example: the bivariate normal distribution

Some results that only hold for the bivariate normal setting
X and Y are independent if and only if ρ = 0
The marginal pdf is again a normal distribution

fX : X ∼ N(µX , σ
2
X )

The conditional distribution is also a normal distribution
fX |Y : X |Y ∼ N(µX + ρσX

σY
(y − µY ), σ2

X (1− ρ2))
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