
T H O M A S D E M U Y N C K

DY N A M I C O P T I M I Z AT I O N

Contents

Introduction 5

Mathematical Preliminaries 13

Dynamic programming under certainty 29

Numerical methods 41

Some applications 51

Stochastic dynamic programming 57

Simulations for models of uncertainty 63

Applications 67

Finite horizon dynamic optimization 73

Introduction

In these notes we wil deal with the following class of problems,

max
(at)∞

t=0

∞

∑
t=0

βtF(xt, at),

subject to xt ∈ X, at ∈ A,

at ∈ Γ(xt),

xt+1 = r(xt, at),

x0 given.

Such problems contain the following ingredients.

1. A set of states, denoted by X and a set of actions, denoted by A. A
state is denoted by x ∈ X and an action is denoted by a ∈ A.

2. A correspondence Γ : X → A that determines for each state x ∈ X,
which actions a ∈ Γ(x) can be taken by the decision maker when
the current state is x.1 1 Think Γ(x) as a budget constraint

where x is the vector of prices and
income and a is the consumption
bundle.

3. An instantaneous payoff function F(x, a) that determines the
immediate benefit of taking an action a ∈ A when the state is
x ∈ X.

4. A transition function r : X × A → X where r(x, a) gives the state
y = r(x, a) ∈ X in the next period given that the current state is
x ∈ X and the current action is a ∈ A.

5. A discount rate β ∈ (0, 1) that determines the trade-off between
future and current payoffs.

The problem is to determine the optimal (infinite) sequence of ac-
tions a0, a1, . . . that should be taken in order to optimize the infinite
horizon discounted payoff function:

∞

∑
t=0

βtF(xt, at),

6

Although this problem may look like a standard optimization prob-
lem, there is one key difference. Namely, the optimization problem
requires us to find an infinite number of values (at)∞

t=0 rather than
a finite number of values. As such, it is not certain that the usual
approach to solve standard optimization problems can also be used
to solve this problem.2 2 By usual, we mean the act of setting

up the Lagrangean and take the cor-
responding Kuhn-Tucker first order
conditions.Before we attack the problem in full force, let us start by con-

sidering an example. We will choose the Ramsey-Cass-Koopmans
model which extended the famous Solow model by permitting elastic
savings rates.3 The Ramsey-Cass-Koopman model is a representa- 3 Ramsey, Frank P. (1928), “A Mathe-

matical Theory of Saving,” Economic
Journal. 38: 543-559.

Cass, David, (1965), “Optimum
Growth in an Aggregative Model of
Capital Accumulation,” Review of
Economic Studies. 32: 233-240.

Koopmans, T. C., (1965), “On the
Concept of Optimal Economic Growth,”
The Economic Approach to Develop-
ment Planning. Chicago: Rand McNally.
pp. 225-287.

tive consumer model with endogenous capital formation. In this
model, we have an economy where capital is the only input in the
production process. The output for a given amount of capital k is
determined by a production function:

f (k) = Akα.

Where α ∈ (0, 1) is the output elasticity of capital. There is a repre-
sentative household that chooses a sequence of consumption levels
(ct)∞

t=0. The period t payoff of choosing ct gives an instantaneous
payoff of

u(ct) = ln(ct).

The problem faced by the representative household is to choose
a sequence of consumption amounts (ct)∞

t=0 and a corresponding
sequence of capital holdings (kt)∞

t=0 to maximize discounted lifetime
utility,

∞

∑
t=0

βt ln(ct).

where β ∈ (0, 1) is an exogenous discount rate. The law of motion for
the capital stock is given by:

kt+1 = Akα
t − ct.

Here kt+1 is the stock of capital in period t + 1. It is equal to the total
amount of output, f (kt) = Akα

t , minus the part of output that is
used for immediate consumption, ct. This law of motion gives a clear
trade off. Consumption increases the payoff but decreases future
consumption by lowering the next period’s amount of capital. The
final piece of information to set up the model is a fixed initial level of

7

capital k0. Combining all pieces, we obtain the following problem,

max
(ct)∞

t=0

∞

∑
t=0

βt ln(ct),

s.t. kt+1 = Akα
t − ct,

kt, ct ≥ 0,

k0 given.

Translating this into the dynamic optimization framework from the
beginning of the chapter, we obtain the following ingredients.

1. The state space X is given by the possible amounts of capital,
(= R+). A state is given by a stock of capital k ∈ X. The action
space, A, is the possible set of consumption levels (= R+). An
action is an amount of consumption c ∈ A.

2. The correspondence Γ(k) determines the possible consumption
levels when the level of capital is equal to k. It is determined by,

Γ(k) = {c ∈ R+ : c ≤ Akα}.

3. The instantaneous payoff function is given by, F(k, c) = ln(c). In
this setting, it is independent of the state k (for given c).

4. The transition function r(k, c) that determines the next periods
amount of capital is given by r(k, c) = Akα − c.

5. The discount rate is given by β.

It is instructive to first solve this problem when the time horizon is
finite instead of infinite. Let T be the final period. If T = 0, we obtain
a static optimization problem whose solution depends on the initial
capital stock k0.

v0(k0) = max
c0

ln(c0) s.t. k1 = Akα
0 − c0; k1, c0 ≥ 0.

Given that k1 ≥ 0 and ln(.) is strictly increasing, the optimal solution
is to set k1 = 0 and c0 = Akα

0 .4 The function v0(k0) is called the 4 As positive amounts of k1 generate no
additional utility, it is optimal to leave
no money on the table after the final
period.

value function. It only depends only on the initial capital stock as
all future capital stocks are determined by the optimal choice of
the consumption levels. Substituting k1 = 0 and c1 = Akα

0 into the
problem gives,

v0(k0) = ln(Akα
0) = ln(A) + α ln(k0).

Now, let look at the problem when the final time period T = 1. In
this case, we need to choose two consumption levels c0 and c1 and we

8

obtain the problem:

v1(k0) = max
c0,c1
{ln(c0) + β ln(c1)},

s.t. k1 = Akα
0 − c0,

k2 = Akα
1 − c1,

c0, c1, k1, k2 ≥ 0.

Given that k2 ≥ 0, one clearly sees that k2 = 0 should hold at the
optimum.5 Given this, we can substitute the constraints c1 = Akα

1 and 5 Again, there should be no money left
on the table.c0 = Akα

0 − k1 into the objective function.

v1(k0) = max
k1
{ln(Akα

0 − k1) + β ln(Akα
1)}.

The first order condition gives,

− 1
Akα

0 − k1
+ βα

Akα−1
1

Akα
1

= 0,

→− 1
Akα

0 − k1
+ βα

1
k1

= 0,

→k1 =
αβ

1 + αβ
Akα

0 .

The last line gives the optimal solution for k1. Plugging this solution Observe that here Akα
0 − k1 =

1
1+αβ Akα

0 = c0 ≥ 0, so the constraints
c0, c1, k1 ≥ 0 are satisfied. Additionally,
it is easily verified that the objective
function is strictly concave in k1, so the
solution characterized by the first order
conditions is a global maximum.

back into the objective function gives the value of v1(k0).

v1(k0) = ln
(

Akα
0 −

αβ

1 + αβ
Akα

0

)
+ β ln

(
A
(

αβ

1 + αβ
Akα

0

)α)
,

= ln
(

A
1 + αβ

)
+ α ln(k0) + β ln

(
A1+α(αβ)α

(1 + αβ)α

)
+ α2β ln(k0),

= ln
(

A
1 + αβ

)
+ β ln

(
A1+α(αβ)α

(1 + αβ)α

)
+ α(1 + αβ) ln(k0),

So far so good. extending the final period once more, we set T = 2.
Then we can write the problem as,6 6 In this case, we can set k2 = 0 and

substitute the constraints into the
objective function.v2(k0) = max

k1,k2
{ln(Akα

0 − k1) + β ln(Akα
1 − k2) + β2 ln(Akα

2)}.

The two first order conditions are,

1
Akα

0 − k1
=

αβAkα−1
1

Akα
1 − k2

,

1
Akα

1 − k2
=

αβAkα−1
2

Akα
2

.

The solution is,7 7 It is readily verified that this implies
c0, c1, c2, k1, k2 ≥ 0. Also the objective
function is strictly concave in (k1, k2) so
the first order conditions are sufficient
for a global maximum.

k1 =
αβ + (αβ)2

1 + αβ + (αβ)2 Akα
0 ,

k2 =
αβ

1 + αβ
Akα

1 .

9

Substituting these solutions into the objective function gives the value
function v2(k0). This expression is big mess.8 We can iterate this 8 Try it.

procedure, and solve the problem for T = 3, 4, 5, Doing this, it can
be shown that the solution converges for T → ∞ to the values,

v∞(k0) = a + b ln(k0), with,

a =
1

1− β

[
ln(A(1− αβ)) +

αβ

1− αβ
ln(Aαβ)

]
,

b =
α

1− αβ
.

This motivate the following procedure to solve the infinite horizon
maximization problem: repeatedly solve the dynamic optimization
problem for T finite, i.e. T = 0, 1, 2, 3, . . ., and look whether the
solution converges when considering T → ∞.

There are several problems with this approach. First of all, it is
is not sure whether we will always get a clean functional form for
vt(k0). In our special setting where f (k) = Akα and u(c) = ln(c), we
did have a closed form expression, but this is not the case in general.
If we don’t have a closed form solution for vt(k0) is not clear how we
should proceed. Second, even if we obtain a closed form solution,
the method is rather cumbersome. We need to solve the optimization
problem for various time periods in order to see some convergence
going on. Third, even assuming that we are able to solve the problem
for several finite time periods, it is not certain that these solutions
convergence to some limiting solution. Let alone that we are able to
proof such convergence. Fourth, even if this convergence happens,
nothing guarantees us that the limit of the finite horizon optimization
problem also provides a solution for the infinite horizon problem.
Finally, we have no idea that this limit solution is the unique solution.

Given the large number of unresolved issues, it might be a good
idea to have a fresh look at the initial problem.

v(k0) = max
(ct)∞

t=0

∞

∑
t=0

βt ln(ct) s.t. ct + kt+1 ≤ Akα
t ,

Suppose that at time t = 1 we are in state k1 = k∗. What, then, is the
optimal choice of c1. In order to solve this problem, we need to solve:

max
(ct)∞

t=1

∞

∑
t=1

βt ln(ct) s.t. ct + kt+1 ≤ Akα
t , k1 = k∗,

= β max
(ct)∞

t=0

∞

∑
t=0

βt ln(ct)s.t. ct + kt+1 ≤ Akα
t , k0 = k∗,

= βv(k∗).

10

This means that we can replace our orriginal problem by solving:

v(k0) = max
c0

{
β0 ln(c0) + βv(k∗)

}
s.t. k∗ = Akα

0 − c0,

= max
c0
{ln(c0) + βv(Akα

0 − c0)} .

This shows that we can reformulate the infinite horizon problem as a
recursive problem. The optimal value v(k0) for an initial capital stock
k0 is determined by choosing c0 to maximize current payoff ln(c0)

and the value of the future payoff which is conveniently written
down as βv(k1) = βv(Akα

0 − c0). The functional equation

v(k) = max
c≤Akα

{ln(c) + βv(Akα − c)}.

is called the Bellman equation of the dynamic optimization prob-
lem.9 If we could somehow find out the value of the function v(.), we 9 A functional equation is an equation

of where the unknown is an entire
function instead of a single variable.

could simply insert it into the right hand side, maximize this right
hand side with respect to c and find out the optimal value for c for
any initial level of capital k.

One way to find out v(.) is to make an educated guess. Before,
we found that the limiting value of the value function of the finite
horizon problem was of the form v(k) = a + b ln(k). Substituting this
into the Bellman equation gives,

a + b ln(k) = max
c
{ln(c) + aβ + bβ ln(Akα − c)},

The maximization problem on the right hand side gives the following
first order conditions,10 10 We see that the right hand side is

concave in c and c ≥ 0 so the first order
conditions give a global maximum.1

c
− βb

Akα − c
= 0,

→c =
Akα

1 + βb
,

→Akα − c =
βb

1 + βb
Akα.

Plugging this into the Bellman equation gives,

a + b ln(k) = ln
(

Akα

1 + βb

)
+ aβ + bβ ln

(
βb

1 + βb
Akα

)
,

Matching up the coefficients on ln(k) gives,

b = α(1 + βb),

→b =
α

1− αβ
.

Matching up the constants gives,

a = ln
(

A
1 + βb

)
+ βa + βb ln

(
βbA

1 + βb

)
.

11

Substituting for b and solving for a finally gives,

a =
1

1− β

[
ln(A(1− αβ)) +

αβ

1− αβ
ln(Aαβ)

]
,

This gives the same solution as before. In this case, we do have a
closed form solution for the value function and for every initial
capital stock k we know the optimal consumption level c = Akα

1+βb . As
such, the optimal solution can be found iteratively,

c0 =
Akα

0
1 + βb

, k1 = Akα
0 − c0,

c1 =
Akα

1
1 + βb

, k2 = Akα
1 − c0,

. . . ,

ct =
Akα

t
1 + βb

, kt+1 = Akα
t − ct,

. . .

The tricky part of this approach is, obviously, that we have to guess
the functional form of the value function v(.) and there are only a
few very specific instances where we can make a good guess about
this functional form.

What then should we do if we don’t know the form of the value
function. Let’s go back to the Bellman equation.

v(k) = max
c≤ f (k)

{u(c) + βv(Akα − c)}.

Can we still somehow use this equation to solve our problem. The
answer is yes and the key to the solution lies in the ‘recursiveness’ of
the equation.

Assume that we start with an “arbitrary” guess for the function
v(.), say v0(.). We know that v0 does not satisfy the Bellman equation,
but let us substitute it into the right hand side anyway. Doing this
gives us on the left hand side a new function, say v1(.).11 11 Observe that we start with a function

v0(.) and get an entire new function
v1(.) out of this by varying the level of k
on the left and right hand side.

v1(k) = max
c
{u(c) + βv0(Akα − c)}.

Now, we can do the same thing with v1(.): plug it into the right hand
side of the Bellman equation and look at the values that it generates
on the left hand, giving us a new function v2(.).

v2(k) = max
c
{u(c) + βv1(Akα − c)}.

12

We can continue this process indefinitely, and generate functions
v1(.), v2(.), v3(.), . . . , vn(.), . . . What happens if we allow n → ∞. We
would hope that finally the function vn(.) converges to some limiting
function v∞ that satisfies our Bellman equation,

v∞(k) = max
c≤ f (k)

{u(c) + βv∞(Akα − c)}.

This is the function we were looking for all along. Of course, cur-
rently, we don’t know whether this iteration will converge to some-
thing useful or even that different starting functions for v0(.) will
converge to the same limiting function v∞(.). Studying the conditions
for which this iteration does converge is the main objective of the
theory developed in these notes.

Mathematical Preliminaries

In this chapter, we will introduce the necessary mathematical
tools and results for the following chapters. We will need to have a
look at the concepts of vector spaces and normed vector spaces. A
special subclass of these spaces have the property that every Cauchy
sequence has a limit, called Banach spaces.

Banach spaces will provide the necessary structure for our state
space. We will define contraction mappings on these spaces and
show that these have a unique fixed point. Additionally, we will
present a useful result called Blackwell’s theorem that gives an easy
to verify set of conditions for a mapping to be a contraction mapping.

In a second part of the chapter, we will have a look at the theorem
of the maximum. This celebrated result in economics gives us condi-
tions for which the result of a maximization exists and satisfies some
convenient continuity conditions.

Banach spaces

Before we can introduce the concept of a Banach space, we first need
to define vector spaces.

Definition 1 (vector space). A real vector space X is a set of elements
together with two operations, addition and scalar multiplication.12 For any 12 The adjective real simply indicates

that scalar multiplication is defined
taking the reals, not elements of the
complex plane or some other set.

two vectors x, y ∈ X, addition gives a vector x + y ∈ X and for any vector
x ∈ X and a real number α ∈ R, scalar multiplication gives αx ∈ X. We
have the following conditions on the operations of a vector space:

1. x + y = y + x;

2. (x + y) + z = x + (y + z)

3. α(x + y) = αx + αy,

4. (α + β)x = αx + βx,

5. (αβ)x = α(βx).

14

6. 1x = x.

Additionally, there is a zero element θ ∈ X such that,

7. x + θ = x,

8. for every x ∈ X there is a −x such that x + (−x) = θ

A first well known example of a vector space is the set of n-
dimensional real vectors Rn.13 However, the concept of a vector 13 Verify that this set satisfies all condi-

tions.space is much broader than vectors of numbers. We will mainly
work with vector spaces that have real valued functions as elements.
Consider two functions f : D → R and g : D → R defined on
some common domain D. Then we can define their sum f + g as the
function h : D → R such that:

h(x) ≡ (f + g)(x) = f (x) + g(x),

and the scalar product, α f (α ∈ R) as the function h : D → R such
that:

h(x) ≡ (α f)(x) = α f (x).

It is clear that these operations satisfy all eight conditions of a vector
space.14 As such, the set F(D) of real valued functions on a common 14 Here we define the null-vector θ to be

the function θ(x) = 0 for all x ∈ X.domain D forms a vector space. We can actually go further. If D is
a topological space and if f and g are continuous functions from X
to R, then f + g and α f are also continuous functions, so the set of
all continuous real valued functions with domain D is also a vector
space. Let us call this space C(D). The following are real vector spaces:

• The finite Euclidean space Rn

• The set X = {x ∈ R2 : x = αz},
where z ∈ R2

• The set of all continuous functions
on [a, b],

The following are not vector spaces

• The unit circle in R2 with the usual
addition

• the set of all integers

• The set of non-negative functions on
[a, b].

We are now ready to define the notion of a norm on a vector space.

Definition 2 (normed vector space). A norm on a vector space X is a
function ‖.‖ : X → R+ such that for all x, y ∈ X and α ∈ R,

• ‖x‖ ≥ 0, with equality if and only if x = θ,

• ‖αx‖ = |α|‖x‖,

• ‖x + y‖ ≤ ‖x‖+ ‖y‖.

The following are normed vector
spaces:

• Rn with ‖x‖ =
(
∑n

i=1 x2
i
)1/2.

• Rn with ‖x‖ = maxi |xi |,
• Rn with ‖x‖ = ∑n

i=1 |xi |.
• The set of all bonded infinite

sequences (x1, . . .) with ‖x‖ =
supk |xk | this space is called `∞.

• The set of continuous functions on
[a, b] with ‖x‖ = supa≤t≤b |x(t)| this
space is called C[a, b].

• The set of continuous functions on
[a, b] with ‖x‖ =

∫ b
a |x(t)|dt.

A vector space X together with a norm ‖.‖ is called a normed
vector space. Intuitively, the idea is that ‖x− y‖ measures the distance
between x and y. In particular, ‖x‖ measures the distance between
the zero element θ and x. The last condition is called the triangle
inequality. Substituting x by x− z and y by z− y gives:

‖x− y‖ ≤ ‖x− z‖+ ‖z− y‖.

In other words, the distance between x and y is always smaller than
the distance between x and z plus the distance from z to y.

15

Now, consider our previously defined vector space C(D) of contin-
uous real valued functions on a common domain D. Let us further
restrict ourselves to the functions that are also bounded.15 Let us call 15 A function f : D → R is bounded

if there exists a number M > 0 such
that for all x ∈ D, | f (x)| ≤ M. Observe
that M is chosen independent of x.
Notice that if D is bounded, then any
continuous function f ∈ C(D) is also
bounded, so in this case C(D) = B(D).

this the set B(D). What would be a good norm on this set. In other
words, if we take two bounded and continuous functions f : D → R

and g : D → R, how can we measure the ‘distance’ ‖ f − g‖ between
these two functions?

A first idea would be to take one particular value x0 ∈ X and to
define,

‖ f − g‖ = | f (x0)− g(x0)|.

In particular ‖ f ‖ = | f (x0)|. The problem with this ‘norm’, how-
ever, is that it does not satisfy the first condition: it is possible that
| f (x0)| = 0, i.e. f (x0) = 0, but f is not equal to the zero function.
This can be fixed by taking the maximal distance between f and g
over the set D,

‖ f − g‖ = max
x∈D
| f (x)− g(x)| in particular ‖ f ‖ = max

x∈D
| f (x)|.

The problem with this proposal is that the maximum may not exist
(if for example D is not compact). We can solve this by taking the
supremum instead of the maximum.16 16 The sup exists because we assumed

that both f and g are bounded.

‖ f − g‖ = sup
x∈D
| f (x)− g(x)| in particular ‖ f ‖ = sup

x∈D
| f (x)|.

This metric is called the sup or infinity norm.17 17 Show that it satisfies all three condi-
tions to be a norm.

For the analysis in the next chapters, it will be useful to generalize
the notion of the sup-norm. Let us go back to the set of continuous
functions on the set D, which we denoted by C(D). Let φ : D → R++

be a continuous function that takes only strictly positive values. For
such given function φ, we consider the set of functions Bφ(D) for

which the function f (x)
φ(x) is bounded. In other words, f ∈ Bφ(D) if f is

continuous and there exists an M such that for all x ∈ D, f (x)
φ(x) ≤ M.

For these functions, we can consider the following norm,

‖ f ‖φ = sup
x∈D

| f (x)|
φ(x)

.

Let us first show that this is indeed a norm. First,

‖ f ‖φ ≥ 0,

is easily established.18 If ‖ f ‖φ = 0. Then we have that for all x ∈ D, 18 Indeed, both | f (x)| ≥ 0 and φ(x) > 0.

0 =
| f (x)|
φ(x)

.

16

Given that φ(x) > 0, we have indeed that f (x) = 0 for all x ∈ D, so f
is the zero function. Next,

‖α f ‖φ = sup
x∈D

|α f (x)|
φ(x)

= |α| sup
x∈D

| f (x)|
φ(x)

= |α|‖ f ‖φ.

finally,

‖ f + g‖φ = sup
x∈D

| f (x) + g(x)|
φ(x)

,

≤ sup
x∈D

| f (x)|+ |g(x)|
φ(x)

,

≤ sup
x∈D

| f (x)|
φ(x)

+ sup
x∈X

|g(x)|
φ(x)

,

= ‖ f ‖φ + ‖g‖φ.

Observe that if we consider the constant function φ(x) = 1 for all
x ∈ D, then ‖ f ‖φ = ‖ f ‖. As such, the sup norm is a special case of
the φ-norm with φ(x) = 1 for all x. However, the φ-norm covers other
cases to. Consider, for example X = R and φ(x) = |x|+ 1 then we
see that f is bounded in the norm ‖.‖φ, if f does not grow faster than
|x|.19 In other words, f can be unbounded but not ‘more’ unbounded 19 For example, f (x) = x2 is not

bounded using this norm on R. but
f (x) = ax + b is bounded although
f (x) = ax + b is not bounded in the
sup-norm.

than the function φ(x) = |x|+ 1. In general f will be bounded in the
φ-norm if the value of | f (x)| does not ‘grow’ faster than φ(x).

A main reason for introducing norms is to measure distance
between different elements of a vector space. Once we can measure
distances, we can also start talking about convergence.

Definition 3 (convergence). Let (X, ‖.‖) be a normed vector space. A
countable sequence (xn)n∈N of elements in X is said to converge to an
element x ∈ X if for all ε > 0, there exists a Nε such that for all n ≥ Nε,20 20 We write Nε to make it clear that Nε

may be different for different values of
ε.‖xn − x‖ < ε.

We also write this as xn
n→ x or limn→∞ xn = x.

In words, a sequence (xn)n∈N converges to an element x if for
all strictly positive numbers ε, it is possible to go far enough in
the sequence, say further than the Nε’th element such that for all
elements xn beyond this element the distance between xn and x is
smaller than ε.21 21 Alternatively, you could say that for

any strictly positive number ε there are
only a finite number of elements in the
sequence (xn)n∈N that are at a distance
greater than ε from x.

Next, we need the definition of a Cauchy sequence.

Definition 4 (Cauchy sequence). Let (X, ‖.‖) be a normed vector space.
A sequence (xn)n∈N in S is a Cauchy sequence if for all ε > 0, there is a
number Nε such that for all n, m ≥ Nε,

‖xn − xm‖ < ε.

17

So a sequence (xn)n∈N is a Cauchy sequence if for any strictly
positive number ε it is possible to go far enough in the sequence,
further than Nε such that the distance between any two elements
beyond the Nε’th position is less than ε. Exercises:

• Show that if xn → x and xn → y
then x = y.

• Show that if a sequence is conver-
gent, then it satisfies the Cauchy
criterion.

• Show that xn → x if and only
if every subsequence of (xn)n∈N

converges to x.

Complete metric spaces

It is always the case that a convergent sequence xn
n→ x in a normed

vector space is also a Cauchy sequence. The reverse, however is not
necessarily the case. In other words, it is possible that (xn)n∈N is
a Cauchy sequence, but it does not converge to an element in X.
Normed vector spaces where this is true are called complete vector
spaces.

Definition 5 (complete metric spaces). A normed vector space (X, ‖.‖) is
complete if every Cauchy sequence in X converges to an element in X.

Not every vector space is complete. As an example, consider the
set C([0, 1]) of continuous functions on the closed interval [0, 1] and
consider the L2 norm:

‖ f ‖ =
(∫ 1

0
| f (t)|2dt

)1/2

.

Let fn be the step function that is equal to 0 on the interval [0, 1− 2−n]

and linearly rises to 1 on the interval [1− 2−n, 1]. One can show that
this is a Cauchy sequence. However, its limit is not a continuous
function.

Intuitively, a complete vector space is a space without any ‘points’
missing, where the missing points could either lie inside or at its
boundary. We take it as a fact that the set of real numbers R with the
norm |x− y| is a complete vector space.22 A complete normed vector 22 This is a consequence of the Bolzano-

Weierstrass theorem.space is also called a Banach space. We will use the term Banach
space from now on.

The following theorem shows that Bφ(D) is a Banach space.

Theorem 1. Let φ : D → R++ be a continuous function and let Bφ(D) be
the set of all continuous functions f : D → R that are bounded in the norm
‖ f ‖φ = supx∈D

f (x)
φ(x) . Then Bφ(D) is a Banach space.

Proof. That Bφ(D) is a normed vector space was shown above. Let
(fn)n∈N be a Cauchy sequence in Bφ(D). We need to show that there
exists an f ∈ Bφ(D) such that:

lim
n→∞

fn = f or equivalently‖ fn − f ‖φ
n→ 0.

18

There are three steps. First, we find a candidate function f , second,
we show that (fn)n∈N converges to this candidate function (in the
‖.‖φ norm). Third we show that the candidate function is in Bφ(D).

For step one, fix x ∈ X, then the sequence of real numbers fn(x)
satisfies,

| fn(x)− fm(x)| = φ(x)
| fn(x)− fm(x)|

φ(x)
,

≤ φ(x) sup
y∈D

| fn(y)− fm(y)|
φ(y)

,

= φ(x)‖ fn − fm‖φ
n,m→ 0.

As such, the sequence (fn(x))n∈N satisfies the Cauchy criterion. No-
tice that this is a sequence in R. Also, as R is complete, the sequence
(fn(x))n∈N has a limit, call it f (x), i.e. limn→∞ fn(x) = f (x).23 Doing 23 This keeps x fixed and regards

(fn(x))n∈N as a sequence of numbers in
R.

this for all x ∈ D, defines a function f : D → R that we take to be our
candidate function.

For step 2, we need to show that ‖ fn − f ‖φ
n→ 0. Let ε > 0 and let

N be such that for n, m ≥ N, ‖ fn − fm‖φ < ε. Then for all n ≥ N

| fn(x)− f (x)|
φ(x)

=
| fn(x)− limm fm(x)|

φ(x)
,

= lim
m

| fn(x)− fm(x)|
φ(x)

,

≤ lim
m
‖ fn − fm‖φ < ε.

This holds for all x. As such, ‖ fn − f ‖φ < ε.
Finally, we need to show that f ∈ Bφ(D). Boundedness of ‖ f ‖φ

is obvious.24 Let us first show that f (x)
φ(x) is continuous. As φ(x) is 24 This follows from the fact that the

sequence (fn)n∈N is a Cauchy sequence.continuous, this also shows that f (x) is continuous. So, let us show
that if xn

n→ x then f (xn)/φ(xn)→ f (x)/φ(x).∣∣∣∣ f (xn)

φ(xn)
− f (x)

φ(x)

∣∣∣∣ = ∣∣∣∣ f (xn)

φ(xn)
− fm(xn)

φ(xn)
+

fm(xn)

φ(xn)
− fm(x)

φ(x)
+

fm(x)
φ(x)

− f (x)
φ(x)

∣∣∣∣ ,

≤ | f (xn)− fm(xn)|
φ(xn)

+

∣∣∣∣ fm(xn)

φ(xn)
− fm(x)

φ(x)

∣∣∣∣+ | fm(x)− f (x)|
φ(x)

,

≤ ‖ f − fm‖φ +

∣∣∣∣ fm(xn)

φ(xn)
− fm(x)

φ(x)

∣∣∣∣+ ‖ fm − f ‖φ.

The first and last term goes can be set arbitrarily small by picking m
large enough as (fm)m∈N converges to f . The middle term goes to
zero by continuity of fm.

When we take φ(x) = 1 for all x, this theorem shows that B(D)

being the set of all continuous functions that are bounded in the sup
norm ‖.‖ norm25 is also a Banach space. 25 These are the continuous functions

that are simply bounded.

19

Corollary 1. Let D ⊆ Rn and let B(D) be the set of all bounded continuous
functions f : X → R with the sup norm ‖ f ‖ = supx∈D | f (x)|. Then B(D)

is a Banach space.

Contraction mappings

Now that we are equipped with the notion of a Banach space, we
can have a look at contraction mappings.

Definition 6 (contraction mapping). Let (X, ‖.‖) be a normed vector
space and let T : X → X be a function mapping X into itself. The operator
T is a contraction mapping with modulus β ∈ [0, 1[if for all x, y ∈ X:

‖T(x)− T(y)‖ ≤ β‖x− y‖.

A function is a contraction mapping if the distance between the
two images of points x and y are closer together than the original
points x and y. Intuitively, when we iterate such mapping, the points
will at each step come closer and closer together. Eventually, we
expect these iterations to converge to what we call a fixed point.

Definition 7. Let (X, ‖.‖) be a normed vector space and let T : X → X.
Then x ∈ X is called a fixed point of T if

T(x) = x.

Let Bφ(D) be our set of continuous functions on D that are
bounded in the φ-norm. A mapping T from Bφ(D) to Bφ(D) takes
a function f ∈ Bφ(D) as input and produces another function
g = T(f) ∈ Bφ(D). A fixed point of T is a function f ∈ Bφ(D)

such that T maps f to itself: f = T(f). A function T that takes func-
tions to functions is called, for clarity, an operator. Often we omit the
brackets when using operators, so we write T f instead of T(f). If we
are interested in the value of T(f) at a particular point x ∈ D, we can
write this as T f (x) or sometimes (to avoid confusion) as (T f)(x).

Every contraction mapping (operator) on a Banach space has a
unique fixed point.

Theorem 2 (Banach’s contraction mapping theorem). Let (X, ‖.‖) be
a Banach space and let T : X → X be a contraction mapping on X with
modulus β, then

• T has exactly one fixed point x ∈ X,

• For any x0 ∈ X, ‖(Tnx0)− x‖ ≤ βn‖x0 − x‖.

20

Proof. Define the iterates of T, the mappings (Tn)n∈N by T0x = x,
Tnx = T(Tn−1x) = (T ◦ Tn−1)(x). Choose x0 ∈ S and let (xn)n∈N be
defined as xn = Tnx0. By the contraction mapping property,

‖x2 − x1‖ = ‖Tx1 − Tx0‖ ≤ β‖x1 − x0‖.

By induction, we can show that,

‖xn+1 − xn‖ ≤ βn‖x1 − x0‖.

As such, for any m ≥ n,

‖xm − xn‖ ≤ ‖xm − xm−1‖+ ‖xm−1 − xm−2‖+ . . . + ‖xn+1 − xn‖,

≤
[

βm−1 + . . . ,+βn+1 + βn
]
‖x1 − x0‖,

= βn
[

βm−n−1 + . . . + β + 1
]
‖x1 − x0‖,

≤ βn

1− β
‖x1 − x0‖

n→ 0.

This shows that (xn)n∈N is a Cauchy sequence, so it has a limit
xn

n→ x ∈ X. To show that Tx = x note that

‖Tx− x‖ ≤ ‖Tx− Tnx0‖+ ‖Tnx0 − x‖,
≤ β‖x− Tn−1x0‖+ ‖Tnx0 − x‖,

Both terms on the right hand side converge to zero as n → ∞ and
the left hand side is independent of n. As such, ‖Tx − x‖ = 0, or
equivalently, Tx = x. For uniqueness, assume that x, x̂ are both fixed
points of T, then

‖x̂− x‖ = ‖Tx̂− Tx‖ ≤ β‖x̂− x‖.

This can only be true if ‖x̂− x‖ = 0 or x̂ = x.

It will often be convenient to restrict the region in the set X where
the fixed point is situated. Let (X, ‖.‖) be a Banach space and let X′

be a closed subset of X. It can be shown that the smaller set (X′, ‖.‖)
is also a Banach space.26 If T : X → X is a contraction mapping and 26 A set X′ is closed if for all sequences

(xn)n∈N in X′, xn
n→ x (according to the

norm ‖.‖) implies that x ∈ X′.
if T maps X′ to X′ then T is also contraction mapping on the smaller
set (X′, ‖.‖).27 As X′ is closed, the unique fixed point of T will lie in

27 This requires that T(X′) ⊆ X′.
X′. This is the gist of the following lemma.

Lemma 1. Let (X, ‖.‖) be a Banach space and let T : X → X be a
contraction mapping with fixed point x ∈ X. If X′ is a closed subset of X
and T(X′) ⊆ X′, then x ∈ X′. If in addition T(X′) ⊆ X′′ ⊆ X′ then
x ∈ X′′.

21

Proof. Choose x0 ∈ X′ and note that (Tnx0)n∈N is a sequence in X′

converging to the fixed point x of T. Since X′ is closed, it follows
that x ∈ X′, so the unique fixed point is also in X′. If in addition
T(X′) ⊆ X′′ then it follows that x = Tx ∈ X′′ so x is also in X′′.

The second part of the contraction mapping theorem provides a
bound on the distance from the n-th iterate Tnx0 to the fixed point x,

‖Tnx0 − x‖ ≤ βn‖x0 − x‖.

This bound, however, is not very useful as it involves the ‘unknown’
limit x. The following gives a computationally more relevant bound.

Lemma 2. Let (X, ‖.‖) be a Banach space, T a contraction mapping and x
the fixed point of T. Then

‖Tnx0 − x‖ ≤ 1
1− β

‖Tnx0 − Tn+1x0‖.

Proof. Notice that,

‖Tnx0 − x‖ ≤ ‖Tnx0 − Tn+1x0‖+ ‖Tn+1x0 − x‖,
≤ ‖Tnx0 − Tn+1x0‖+ β‖Tnx0 − x‖.

Rearranging this inequality gives the desired result.

Previously, we saw that the set of continuous functions f : D → R

that are bounded in the ‖.‖φ norm, i.e. Bφ(D) was a Banach space.
We will mainly be interested in contraction mappings from Bφ(D)→
Bφ(D). These contraction mappings take functions in Bφ(D) to other
functions in Bφ(D). The following theorem, known as Blackwell’s
theorem provides sufficient, easy to verify, conditions for an operator
T to be a contraction mapping on Bφ(D).

Theorem 3 (Blackwell’s sufficient conditions). Let φ : D → R++ be a
continuous function and let let Bφ(D) be the space of continuous functions
f : D → R, that are bounded in the norm ‖.‖φ. Let T : Bφ(D) → Bφ(D)

be an operator satisfying,

• (monotonicity) If f , g ∈ Bφ(D) and f (x) ≤ g(x) for all x ∈ D, then
(T f)(x) ≤ (Tg)(x) for all x ∈ D.

• (discounting) for all x ∈ D, f ∈ Bφ(D) and a ≥ 0, there is some
β ∈ (0, 1) such that,

T(f + aφ)(x) ≤ (T f)(x) + (βa)φ(x),

Then T is a contraction with modulus β.

22

Proof. Observe that

f (x)
φ(x)

=
g(x)
φ(x)

+
f (x)− g(x)

φ(x)
,

≤ g(x)
φ(x)

+
| f (x)− g(x)|

φ(x)
,

≤ g(x)
φ(x)

+ ‖ f − g‖φ.

as such, multiplying both sides by φ(x) > 0 gives,

f (x) ≤ g(x) + φ(x)‖ f − g‖φ.

So, by monotonicity

(T f)(x) ≤ T(g + ‖ f − g‖φφ)(x) ≤ (Tg)(x) + β‖ f − g‖φφ(x).

Equivalently,
(T f)(x)− (Tg)(x)

φ(x)
≤ β‖ f − g‖φ.

Reversing the roles of f and g gives

(Tg)(x)− (T f)(x)
φ(x)

≤ β‖ f − g‖φ.

This holds for all x and the right hand side does not depend on x, so
taking the sup on the left hand side gives:

‖T f − Tg‖φ ≤ β‖ f − g‖φ,

so T is a contraction mapping with modulus β.

Applying above theorem to the case φ(x) = 1,28 we obtain the 28 This is the case where ‖.‖φ is the sup
norm and B(X) is the set of bounded
continuous functions on X.

following, better known, version of Blackwell’s theorem.

Corollary 2 (Blackwell’s sufficient conditions). Let D ⊆ Rl and let
B(D) be the space of bounded functions f : D → R, with the sup norm. Let
T : B(D)→ B(D) be an operator satisfying,

• (monotonicity) If f , g ∈ B(D) and f (x) ≤ g(x) for all x ∈ D, then
(T f)(x) ≤ (Tg)(x) for all x ∈ D.

• (discounting) for all x ∈ D, there is some β ∈ (0, 1) such that,

T(f + a)(x) ≤ (T f)(x) + βa,

for all f ∈ B(D) and a ≥ 0.

Then T is a contraction with modulus β.

23

Theorem of the maximum

In the second part of this chapter we’ll have a look at a seminal
result in mathematics, the theorem of the maximum. Consider two
sets X ⊆ Rl , and A ⊆ Rm, and let f : X × A → R be a real valued
function that takes a vector x ∈ X, a vector in a ∈ A and produces
a real number f (x, a). Let Γ : X → A be a correspondence.29 The 29 A correspondence Γ : X → A is a

mathematical object that takes a vector
x ∈ X and delivers a subset Γ(x) ⊆ A.

theorem of the maximum deals with optimization problems of the
following form,

max
a∈Γ(x)

f (x, a).

This problem optimizes a function f (x, a) with respect to a, when a is
restricted to lie in the set Γ(x). Here x is kept fixed, so it is a param-
eter of the optimization problem. If for each x, f (x, a) is continuous
in a and the set Γ(x) is nonempty and compact,30 then for all x the 30 Here, compactness means that

for each x ∈ X, Γ(x) is closed and
bounded.

maximum is attained.31 In this case, we can define the function
31 This follows from the extreme value
theorem.v(x) = max

a∈Γ(x)
f (x, a),

and the correspondence:

G(x) = {a ∈ Γ(x) : f (x, a) = v(x)},

of values in Γ(x) that attain this maximum. We would like to place
additional restrictions such that the function v and the set G vary
‘continuously’ with the ‘parameter’ x.

Towards this end, we need to define the concepts of lower and
upper hemi-continuity.

Definition 8 (Lower hemi-continuity). The correspondence Γ : X → A is
lower hemi-continuous (l.h.c.) at x ∈ X if

1. Γ(x) is non-empty

2. for every a ∈ Γ(x) and every sequence xn
n→ x, there exists an N ≥ 1

and a sequence (an)n∈N such that an
n→ a and an ∈ Γ(xn) for all

n ≥ N.32 32 If Γ(xn) is nonempty for all n, we can
always take N = 1.

Definition 9 (Upper hemi-continuity). A compact-valued correspondence
Γ : X → A is upper hemi-continuous and compact valued (u.h.c.) at
x ∈ X if for every sequence xn

n→ x and every sequence (an)n≥N such
that an ∈ Γ(xn) for all n, the sequence (an)t∈N is bounded and if (an)n∈N

converges, then its limit point a is in Γ(x).

Definition 10 (continuity). A correspondence Γ : X → A is continuous at
x ∈ X if it is both u.h.c. and l.h.c. at x. A correspondence is continuous if it
is continuous at each point in its domain.

24

The following lemma is a well known result concerning conver-
gence of sequences and will be useful in the proof of the following
theorem.

Lemma 3. Let v : Rn → R be a real valued function. The function v is
continuous at x if and only if for all sequences (xn)n∈N with xn

n→ x there
is a subsequence (xϕ(n))n∈N such that v(xϕ(n))

n→ v(x).

Proof. (→) Let v be continuous and xn
n→ x. Then evidently v(xn)

n→
v(x) so for all subsequences (xϕ(n))n∈N of (xn)n∈N we should have

that v(xϕ(n))
n→ v(x).

(←) For the reverse, assume that v is not continuous at x. Then
there is a sequence (xn)n∈N such that v(xn) 6

n→ v(x). From this, we
will construct a sequence zt → x that has no subsequence zϕ(n) such
that v(zϕ(n)) converges to v(x).

As v(xn) 6→ v(x), there exists a ε > 0 such that for all T, there is
an n ≥ T such that |v(x)− v(xn)| > ε. This generates a sequence of
numbers n1, n2, n3, . . . such that for all k, |v(x)− v(xnk)| > ε. Without
loss of generality, we can assume that this sequence of numbers is
increasing. Let zk = xnk . We see that (zn)n∈N is a sequence such that
zn

n→ x. Additionally, (v(zn))n∈N has no subsequence (v(zϕ(n)))n∈N

that converges to v(x), as was to be shown.

Theorem 4 (Theorem of the maximum). Let X ⊆ Rl , A ⊆ Rm. Let
f : X × A → R be a continuous function, and let Γ : X → A be a
continuous correspondence. Then the function v : X → R,

v(x) = max
a∈Γ(x)

f (x, a).

is continuous, and the correspondence G : X → A

G(x) = {a ∈ Γ(x) : f (x, a) = v(x)},

is non-empty and u.h.c.

Proof. Let us first show that v is continuous. By the above lemma,
it suffices to show that any sequence xn → x has a subsequence
(xϕ(n))n∈N such that v(xϕ(n))

n→ v(x). Take any x ∈ X and consider

any sequence (xn)n∈N such that xn
n→ x. We need to construct a

subsequence (xϕ(n))n∈N such that v(xϕ(n))
n→ v(x).

As xn
n→ x we have for all n an element an ∈ G(xn) and v(xn) =

f (xn, an). As Γ is u.h.c. we have that there exists a subsequence
(aϕ(n))n∈N converging to a ∈ Γ(x). Also, as f is continuous, limn f (xϕ(n), aϕ(n)) =

limn v(xϕ(n)) = f (x, a). Let us finish the proof by showing that
f (x, a) = v(x). If not, then there is an element a′ ∈ G(x) such that
v(x) = f (x, a′) > f (x, a).

25

We have that a′ ∈ Γ(x), so by l.h.c. we have that there is a sequence
a′

ϕ(n)
n→ a′ such that a′

ϕ(n) ∈ Γ(xϕ(n)). By optimality of aϕ(n) we have
that for all n ∈N:

f (xϕ(n), aϕ(n)) ≥ f (xϕ(n), a′ϕ(n)).

Taking limits on both sides and using continuity of f gives f (x, a) ≥
f (x, a′), which gives the contradiction.

Next, let us show that G(x) is u.h.c. Fix x and let (xn)n∈N be a
sequence converging to x and let an ∈ G(xn). As an ∈ Γ(xn) for all n,
we know that (an)n∈N is bounded. Next if an

n→ a then by continuity
of v and f .

v(x) = lim
n

v(xn) = lim
n

f (xn, an) = f (x, a),

by continuity of f and v. As such, a ∈ G(x) which shows that G is
u.h.c.

In general the optimal value corre-
spondence is not l.h.c. Consider the
example where X = R, f (x, a) = xa2

and γ(x) = [−1, 1] for all x. Then

G(x) =

{−1, 1} if x > 0
[−1, 1] if x = 0,
0 if x < 0.

Take a sequence xt → 0 where
xt < 0 for all t. Then 0.5 ∈ G(0) but
G(xt) = {−1, 1} for all xt so there is not
sequence in G(xt) that converges to 0.5
which means that the correspondence G
is not l.h.c. at x = 0.

Theorem 5. Let X ⊆ Rl and A ⊆ Rk. Let Γ : X → A be convex valued,
compact valued and continuous. Assume that f : X× A→ R is continuous
and that f (x, a) is strictly (quasi)-concave in its second argument then if

v(x) = max
a∈Γ(x)

f (x, a),

we have that

g(x) = {y ∈ Γ(x) : f (x, y) = v(x).}

is single valued, and the function g(x) is continuous.

Proof. From the theorem of the maximum, we know that the optimal
solution correspondence G is bounded, compact valued and u.h.c.
Let us first show that G is single valued. Assume, towards a con-
tradiction, that a1, a2 ∈ G(x), i.e. f (x, a1) = f (x, a2) = v(x). Then
λa1 + (1− λ)a2 ∈ Γ(x) for λ ∈ (0, 1) so:

f (x, λa1 + (1− λ)a2) > min{ f (x, a1), f (x, a2)} = v(x).

but this contradicts the optimality of a1 and a2. This shows that g is a
single valued function. For continuity, let xn → x. It suffices to show
that (xn)n∈N has a subsequence (xϕ(n))n∈N such that g(xϕ(n))

n→
g. Obviously, g(xn) ∈ G(xn). Then by u.h.c. of G, (g(xn))n∈N is
bounded. So it has a convergent subsequence, say g(xϕ(n))

n→ g. Also
g(xϕ(n)) ∈ G(xϕ(n)) so again by u.h.c., g ∈ G(x). By single valuedness
of G, we have g = g(x).

The second part of the theorem is actu-
ally true in general. If g is a function
and u.h.c. then it is continuous. Also if
g is a function and l.h.c. then it is also
continuous.

26

Theorem 6. Let X ⊆ Rl , A ⊆ Rk. Let Γ : X → A be convex valued,
compact valued and continuous. Let (fn)n∈N be a sequence of continuous
functions on X × A and assume that for all n, fn(x, a) is strictly concave
in its second argument. Assume that f has the same properties and that
‖ fn − f ‖φ

n→ 0. Let,

gn = arg max
a∈Γ(x)

fn(x, a),

and
g = arg max

a∈Γ(x)
f (x, a).

then for all x ∈ X, gn(x) n→ g(x). If X is compact then ‖gn − g‖φ → 0.

Proof. We have that,

0 ≤ f (x, g(x))− f (x, gn(x)),

≤ (f (x, g(x))− f (x, gn(x))) + (fn(x, gn(x))− fn(x, g(x)))︸ ︷︷ ︸
≥0

,

= (f (x, g(x))− fn(x, g(x)) + (fn(x, gn(x))− f (x, gn(x))),

≤ φ(x)‖ f − fn‖φ + φ(x)‖ fn − f ‖φ.

This shows that:

sup
x∈X

∣∣∣∣ f (x, g(x))− f (x, gn(x))
φ(x)

∣∣∣∣ n→ 0.

First, to show that for all x ∈ X, ‖gn(x) − g(x)‖ n→ 0, assume,
towards a contradiction that for some x ∈ X, gn(x) 6 n→ g(x). If so,
there must be a subsequence gϕ(n)(x) and a ε > 0 such that for all n,

‖gϕ(n)(x)− g(x)‖ ≥ ε.

Let,
Aε = {a ∈ Γ(x) : ‖a− g(x)‖ ≥ ε}.

We know that for all n, gϕ(n)(x) ∈ Aε, so Aε is non-empty. Also the
element g(x) /∈ Aε. The set Aε is also a compact subset of A.

Let
δ = min

a∈Aε

| f (x, g(x))− f (x, a)|.

This problem is well defined as Aε is a compact set and the objective
function is continuous. Also f (x, g(x)) ≥ f (x, a) for all a ∈ Aε ⊆ Γ(x).
In fact, the absolute value | f (x, g(x))− f (x, a)| is equal to 0 only if
a solves the maximization problem which means that in this case
g(x) = a. However g(x) /∈ Aε which means that the solution to this
minimization problem must give δ > 0. As gϕ(n)(x) ∈ Aε it follows
that for all n,

| f (x, g(x))− f (x, gϕ(n)(x))| > δ.

27

However | f (x, g(x))− f (x, gϕ(n)(x))| → 0 as supx∈X

∣∣∣ f (x,g(x))− f (x,gn(x))
φ(x)

∣∣∣ n→
0, a contradiction.

For the second part, assume that X is compact. Let us show that
‖gn − g‖φ

n→ 0. If not then there exists a subsequence (gϕ(n))n∈N such
that for all n,

‖gϕ(n) − g‖φ ≥ ε.

In particular, for all n there exists an xn ∈ X such that

‖gϕ(n)(xn)− g(xn)‖
φ(xn)

≥ ε

2
.

Let,

Aε =

{
(x, a) ∈ X× A : a ∈ Γ(x),

‖a− g(x)‖
φ(x)

≥ ε

2

}
.

One sees that Aε is a compact subset of X × A. For all n, there is an
xn ∈ X and an gϕ(n)(xn) ∈ Γ(xn), such that (xn, gϕ(n)(xn)) ∈ Aε, so it
is non-empty. Finally, for all x ∈ X, (x, g(x)) /∈ Aε.

Let,

δ = min
(x,a)∈Aε

| f (x, g(x))− f (x, a)|
φ(x)

.

Observe that the objective function is zero only if f (x, g(x)) = f (x, a)
which only happens if a = g(x). However, we know that (x, g(x)) /∈
Aε. This implies that δ > 0. As for all n, (xn, gϕ(n)(xn)) ∈ Aε, we
therefore have that for all n:

| f (xn, g(xn))− f (xn, gϕ(n)(xn)|
φ(xn)

≥ δ > 0.

This contradicts the fact that,

sup
x∈X

∣∣∣∣ f (x, g(x))− f (x, gn(x))
φ(x)

∣∣∣∣ n→ 0.

Dynamic programming under certainty

In this chapter we will investigate the infinite horizon optimization
problem that we presented in chapter 1.

We denote by X ⊆ Rl the state space. An element x ∈ X captures
the state of the world at a particular point in time. We denote by
A ⊆ Rk the set of controls variables and we denote by Γ : X → A the
correspondence that determines for all states x the possible values of
the control variable. The next period feasible states are determined by
a function r : X× A→ X such that y = r(x, a) ∈ X is the next period’s
state if the current state is x and the chosen control variable has the
value a. We also denote by F : X × A → R the instantaneous payoff
function that depends on the values of the current state and control.
Finally, let β ∈ (0, 1) be a discount factor. In this section, we will
be interested in finding solutions to the following infinite horizon
optimization problem,

v(x0) = max
a0,a1,a2,...

∞

∑
t=0

βtF(xt, at),

s.t. xt+1 = r(xt, at),

at ∈ Γ(xt),

x0 given.

We will do this by relating it to the fixed point of the so called Bell-
man operator, T : Bφ(X)→ Bφ(X) defined by,

(Tv)(x) = max
a∈Γ(x)

{F(x, a) + βv(r(x, a))}.

In particular, we will show that under certain conditions the first
problem has a solution, and its solution is equivalent to the fixed
point of the Bellman operator Tv.

Definition 11 (Regularity condition). The problem (X, A, Γ, F, β) is
regular if the one period return function F : X× A→ R and the transition
function r : X × A → R are continuous, if the transition correspondence
Γ : X → A is non-empty, continuous (u.h.c. and l.h.c.) and, additionally,
there is a continuous function φ : X → R++ such that,

30

1. There exists an M ≥ 0 such that for all x ∈ X:

max
a∈Γ(x)

|F(x, a)| ≤ Mφ(x).

2. There exists a θ ∈ (0, 1) such that for all x ∈ X:

β max
a∈Γ(x)

φ(r(x, a)) ≤ θφ(x).

Observe that if the function F is
bounded, then the regularity condi-
tions are satisfied by choosing φ(x) = 1
for all x.

Theorem 7. If the problem (X, A, Γ, F, β) is regular then the Bellman
operator is a contraction mapping from Bφ(X) to Bφ(X).

Proof. If v ∈ Bφ(X), then v is continuous. Also F and r are continu-
ous and Γ is continuous and compact valued. As such, the optimiza-
tion problem,

(Tv)(x) = max
a∈Γ(x)

{F(x, a) + βv(r(x, a))},

is well defined for all x ∈ X. By the theorem of the maximum, the
maximum value function is continuous in x. As such, (Tv)(x) is a
continuous function of x. in order to show that T : Bφ(X) → Bφ(X)

it suffices to show that ‖Tv‖φ is bounded whenever ‖v‖φ is bounded.
Now, assume that ‖v‖φ < N then,

|(Tv)(x)| =
∣∣∣∣ max
a∈Γ(x)

{F(x, a) + βv(r(x, a))}
∣∣∣∣ ,

≤ max
a∈Γ(x)

|F(x, a)|+ β max
a∈Γ(x)

|v(r(x, a))| ,

≤ Mφ(x) + βN max
a∈Γ

φ(r(x, a)),

≤ Mφ(x) + Nθφ(x) = (M + Nθ)φ(x).

This shows that ‖Tv‖φ ≤ M + Nθ, so ‖Tv‖φ is bounded. Conclude
that Tv ∈ Bφ(X).

In order to show that T is a contraction mapping, we use Black-
well’s theorem. For monotonicity, assume that v ≥ w. Then,

(Tv)(x) = max
a∈Γ(x)

F(x, a) + βv(r(x, a)),

≥ max
a∈Γ(x)

F(x, a) + βw(r(x, a)) = (Tw)(x).

For additivity,

(T(v + aφ))(x) = max
a∈Γ(x)

{F(x, a) + β (v + aφ) (r(x, a))},

≤ max
a∈Γ(x)

{F(x, a) + βv(r(x, a))}+ a max
a∈Γ(x)

βφ(r(x, a)),

≤ (Tv)(x) + aθφ(x).

31

Above theorem shows that the Bellman operator has a fixed point,
say v, which is continuous and bounded in the ‖.‖φ norm. Associated
with the Bellman operator, we can find a policy correspondence, G
where

G(x) = {a ∈ Γ(x) : F(x, a) + βv(r(x, a)) = v(x)}.

Consider our infinite horizon optimization problem.

sup
(at)∞

t=0

∞

∑
t=0

βtF(xt, at),

s.t. at ∈ Γ(xt),

xt+1 = r(xt, at),

x0 ∈ X given.

When is this problem well defined? When can we replace the sup
with a max operator? When does the solution coincide with the fixed
point of the Bellman operator? These are three questions that we are
going to answer now.

Definition 12 (feasible path). A feasible path is a sequence ((x0, a0), (x1, a1), . . .)
such that for all t ∈N,

1. at−1 ∈ Γ(xt−1),

2. xt = r(xt−1, at−1).

Let Π(x0) be the set of all feasible paths that start at the state x0 ∈ X. Then
for such paths p = ((x0, a0), (x1, a1), . . .) ∈ Π(x0) we define,

wp =
∞

∑
t=0

βtF(xt, at) ≡ lim
T→∞

T

∑
t=0

βtF(xt, at),

whenever this limit is well defined.

Lemma 4. Assume that (X, Γ, F, β) is regular and let x0 ∈ X. Then for
all paths p ∈ Π(x0), wp is well defined and the set {wp : p ∈ Π(x0)} is
bounded from above.

Proof. Fix a feasible path p = {(x0, a0), (x1, a1), . . . , } ∈ Π(x0) and
define un = ∑n

t=0 βtF(xt, at). In order to show that wp is well defined,
we need to show that the sequence u1, u2, u3, . . . converges. We do
this by showing that (un)n∈N is a Cauchy sequence.33 Fix ε > 0. We 33 Remember that R is a Banach space,

so every Cauchy sequence of real
numbers converges.

have to find an Nε ∈N such that for all n, m ≥ Nε.

|un − um| < ε.

32

Assume w.l.o.g. that n > m then,

|un − um| =
∣∣∣∣∣ n

∑
t=m

βtF(xt, at)

∣∣∣∣∣ ,

≤
n

∑
t=m

βt|F(xt, at)|,

≤
n

∑
t=m

Mβtφ(xt).

Now, φ(xt) ≤ maxa∈Γ(xt−1)
φ(r(xt−1, a)) ≤ θ

β φ(xt−1). Iterating this

further, we see that, φ(xt) ≤
(

θ
β

)t
φ(x0). As such,

|un − um| ≤
n

∑
t=m

Mθtφ(x0),

≤ Mθmφ(x0)
n−m

∑
t=0

θt,

≤ Mθm φ(x0)

1− θ

n→ 0

This shows that (un)n∈N is Cauchy. So un
n→ u ≡ wp is well defined.

Now let us show that there is an A (which may depend on x0)
such that for all paths p = {(x0, a0), (x1, a1), . . .} ∈ Π(x0), wp ≤ A.34 34 Remember: every set of real numbers

which is bounded from above has a
supremum, so this shows that sup{wp :
p ∈ Π(x0)} is well defined.

As above, we have that,

βt|F(xt, at)| ≤ Mβtφ(xt) ≤ Mθtφ(x0).

This gives,

un =
T

∑
t=0

βtF(xt, at),

≤
T

∑
t=0

βt|F(xt, at)|,

≤
T

∑
t=0

θt Mφ(x0),

≤ Mφ(x0)
1

1− θ
.

Setting A = 1
1−θ Mφ(x0) demonstrates the proof.

This lemma shows that V(x0) = sup{wp : p ∈ Π(x0)} is well
defined.

The next step is to show that the fixed point of the Bellman oper-
ator v satisfies that for all x0 ∈ X, (i) v(x0) ≥ V(x0) and (ii) for all
x0 ∈ X, there is a path p ∈ Π(x0) such that v(x0) = wp.

Lemma 5. Let (X, A, Γ, F, β) be a regular problem and let v be the fixed
point of the Bellman operator. Then for all paths p ∈ Π(x0) v(x0) ≥ wp.35 35 In other words, v(x0) is an upper

bound for {wp : p ∈ Π(x0)}.

33

Proof. Let v be the fixed point of the Bellman operator and let p =

((x0, a0), (x1, a1), . . .) ∈ Π(x0) be a path. We will show that v(x0) ≥
wp.

Now, by definition v(x) = maxa∈Γ(x) F(x, a) + βv(r(x, a)), so,

v(x0) ≥ F(x0, a0) + βv(x1),

≥ F(x0, a0) + βF(x1, a1) + β2v(x2),

. . .

≥
T

∑
t=0

βtF(xt, at) + βTv(xT).

Taking the limit for T → ∞, gives36, 36 Observe that the limit
limT ∑T

t=0 βtF(xt, at) is well defined
by the previous lemma.

v(x0) ≥ lim
T→∞

T

∑
t=0

βtF(xt, at) + lim
T→∞

βTv(xT) = wp + lim
T→∞

βTv(xT).

As such, we only need to show that limT→∞ βTv(xT) = 0.37 Now, 37 In other words, for all ε > 0 there
exists an Nε such that for all n ≥ Nε,
|βtv(xt)| < ε.

|v(xT)| =
|v(xT)|
φ(xT)

φ(xT)

φ(xT−1)
. . .

φ(x1)

φ(x0)
φ(x0).

Also:

|v(xT)|
φ(xT)

≤ ‖v‖φ.

And, for all t,

φ(xt) ≤ max
a∈Γ(xt−1)

φ(r(a, xt−1) ≤
θ

β
φ(xt−1),

→ φ(xt)

φ(xt−1)
≤ θ

β
.

from this

|v(xT)| ≤
(

θ

β

)T−1
‖v‖φφ(x0),

→βT |v(xT)| ≤ θT−1β‖v‖φφ(x0)
T→ 0.

This shows that the value function is an upper bound to any feasible
solution of the infinite horizon optimization problem, so v(x0) ≥
V(x0).

Given the fixed point of the Bellman operator, define recursively a
path g = ((x0, a0), (x1, a1), . . .) ∈ Π(x0) by,38 38 The right hand side is a maximiza-

tion problem of a continuous function
(F(xt, a) + βv(r(xt, a)) over a com-
pact set Γ(xt) so the solution at and
therefore the path g is well defined.

at ∈ arg max
a∈Γ(xt)

{F(xt, a) + βv(r(xt, a))} ,

xt+1 = r(xt, at).

34

Lemma 6. Let (X, A, Γ, F, β) be a regular problem and let v be the fixed
point of the Bellman operator. Then for all x0 ∈ X, v(x0) = wg.

Proof. Let g = ((x0, a0), (x1, a1), . . .) be the path as defined above.
Then, we have,

v(x0) = F(x0, a0) + βv(x1),

= F(x0, a0) + βF(x1, a1) + βv(x2),

. . . ,

=
T

∑
t=1

βtF(xt, at) + βTv(xT).

Taking limits gives, v(x0) = wg(x0) + limT βTv(xT) and similar to the
proof of the previous lemma, we know that

lim
T

βTv(xT) = 0.

as was to be shown.

Let us consider the following example,

max
c0,c1,...

∞

∑
t=0

βt ln(ct + 1) s.t. kt+1 = kα
t − ct,

s.t. 0 ≤ ct ≤ kα
t ,

k0 given.

Here, capital k is the state variable and consumption c is the control
variable, ln(c + 1) is the instantaneous utility function, β ∈ (0, 1)
is the discount factor and δ is the depreciation rate. In terms of the
model outlined above, we have that X = R, A = R, F = ln(ct + 1),
Γ(k) = {c ∈ R+ : 0 ≤ c ≤ kα} and r(k, c) = kα − c. We assume that
α ≤ 1.

The Bellman operator is given by,

(Tv)(k) = max
0≤c≤kα

ln(c + 1) + βv(kα − c).

In order for the fixed point of the Bellman operator to solve the
problem, we need to find a function φ(k) > 0 a number M and a
θ < 1 such that,

• max0≤c≤kα ln(c + 1) ≤ Mφ(k).

• β max0≤c≤kα φ(kα − c) ≤ θφ(k).

Let’s try the function φ(k) = ln(k + 1) + 1 > 0 which is strictly positive
and continuous. Consider first the case where α ≤ 1. Then for the

35

first condition,

max
0≤c≤kα

| ln(c + 1)| = ln(kα + 1),

≤ ln(k + 1) ≤ ln(k + 1) + 1 = φ(k).

The first inequality uses kα ≤ k and the fact that ln(.) is increasing.
Setting M = 1 shows the condition. For the second condition,

β

(
max

0≤c≤kα
ln((kα − c) + 1) + 1

)
= β ln(kα + 1) + β,

≤ β(ln(k + 1) + 1) = βφ(k),

Setting θ = β < 1 shows the condition.
Let’s now consider the case α > 1. For the first condition,

max
0≤c≤kα

| ln(c + 1)| = ln(kα + 1),

≤ ln((k + 1)α) = α ln(k + 1) ≤ α(ln(k + 1) + 1).

The inequality follows from the fact that kα + 1 ≤ (k + 1)α if α > 1.39 39 In order to see this, notice that kα + 1
and (k + 1)α are equal when k = 0.
However, the derivative of (k + 1)α is
always bigger than that of kα + 1, so
the functions start at the same point for
k = 0 but the slope is always bigger for
the first than for the second.

Setting M = α shows the condition. For the second condition,

β

(
max

0≤c≤kα
(ln((kα − c) + 1) + 1)

)
= β ln(kα + 1) + β,

≤ βα ln(k + 1) + β,

≤ βα(ln(k + 1) + 1) = βαφ(k).

Setting θ = βα shows the second condition. Observe that this requires
that α < 1/β so α can be greater than one but not too high.

Properties of the Bellman fixed point

Let us now have a look at some of the properties of the fixed point
of the Bellman operator. In this part, we will take the simplifying
assumption that A = X and r(x, a) = a. In other words, the optimiza-
tion problem can be rewritten as,

v(x) = max
a∈Γ(x)

F(x, a) + βv(a).

Theorem 8. Let (X, Γ, F, β) satisfy the assumptions of Definition 11. Let
F(., a) be strictly increasing in each of its first arguments and assume that Γ
is monotone in the sense that for x ≤ x′,

Γ(x) ⊆ Γ(x′).

Then, the fixed point v of the Bellman operator is strictly increasing.

36

Proof. Let B′φ(X) ⊆ Bφ(X) be the set of bounded (in the ‖.‖φ norm),
continuous, weakly-increasing functions on X and let B′′φ(X) ⊂ B′φ(X)

be the subset of strictly increasing functions. Since B′φ(X) is a closed
subset of Bφ(X) it suffices to show that T[B′φ(X)] ⊆ B′′φ(X).40 40 In other words, the Bellman operator

maps weakly increasing functions into
the set of strictly increasing functions.

If x′ > x then by monotonicity of Γ: Γ(x) ⊆ Γ(x′). Let a′ solve
maxa∈Γ(x){F(x, a) + βv(a)}. Then,

(Tv)(x) = F(x, a′) + βv(a′)) < F(x′, a′) + βv(a′),

≤ max
a∈Γ(x′)

F(x′, a) + βv(a) = (Tv)(x′).

Theorem 9. Let (X, Γ, F, r, β) satisfy the assumptions of Definition 11. Let
F be strictly concave, i.e. for all θ ∈ (0, 1),

F(θ(x, a) + (1− θ)(x′, a′)) ≥ θF(x, a) + (1− θ)F(x′, a′),

with a strict inequality if (x, a) 6= (x′, a′) and assume that Γ is convex in
the sense that for all θ ∈ [0, 1] and x, x′ ∈ X,

a ∈ Γ(x), a′ ∈ Γ(x′) implies θa + (1− θ)a′ ∈ Γ(θx + (1− θ)x′).

Then v is strictly concave and g(x) = arg maxa∈Γ(x) F(x, a) + βv(a) is a
continuous, single-valued function.

Proof. Let B′φ(X) ⊆ Bφ(X) be the set of bounded continuous, weakly
concave functions and let B′′φ(X) ⊆ B′φ(X) be the subset of strictly
concave functions. It suffices to show that T[B′φ(X)] ⊆ B′′φ(X).
Let v be concave and let x0 6= x1, θ ∈ (0, 1) and set xθ = θx0 +

(1− θ)x1. Also let a0 solve maxa∈Γ(x0)
F(x0, a) + βv(a) and a1 solve

maxa∈Γ(x1)
F(x1, a) + βv(a). Let aθ = θa0 + (1− θ)a1. Then,

(Tv)(xθ) ≥ F(xθ , aθ) + βv(aθ),

> θF(x0, a0) + (1− θ)F(x1, a1) + βθv(a0) + β(1− θ)v(a1),

= θ(Tv)(x0) + (1− θ)(Tv)(x1).

This shows that the Belman fixed point function is strictly concave.
Given strict concavity,

max
a∈Γ(x)

F(x, a) + βv(a),

maximizes a strictly concave function. As such, the optimal value
is unique so g(x) is a function. As g is also u.h.c. (from Berge’s
maximum theorem), so the function g is continuous.

Theorem 10. Let (X, Γ, F, β) satisfy the assumptions of Definition 11
and let v be the fixed point of the Bellman operator. Let F(x, a) be strictly

37

concave in a, let B′φ(X) be the set of bounded continuous, concave functions
and let v0 ∈ B′φ(X). Let (vn, gn)n∈N be defined as,

vn+1 = Tvn,

gn(x) = arg max
a∈Γ(x)

F(x, a) + βvn(a).

Then gn → g pointwise. If X is compact, then ‖gn − g‖φ → 0.

Proof. Let B′′φ(X) be the set of strictly concave bounded continuous
functions. We know that for all n, vn ∈ B′′φ(X). For a ∈ Γ(x), let
fn(x, a) = F(x, a) + βvn(a). We have that every function fn(x, y) is
strictly concave. Also let f (x, a) = F(x, a) + βv(a). Then,

| fn(x, a)− f (x, a)| = β|vn(a)− v(a)|,

= φ(a)β
|vn(a)− v(a)|

φ(a)
,

≤ φ(x)θ‖vn − v‖φ
n→ 0

This shows that ‖ fn(x, a) − f (x, a)‖φ
n→ 0. As such gn(x) n→ g(x)

pointwise. If X is compact, we get that ‖gn − g‖φ
n→ 0.

The following part provides assumptions for which the value
function can be assumed to be differentiable. It uses the Benveniste
Scheinkman theorem.

Theorem 11 (Benveniste and Scheinkman). Let X ⊆ Rl be a convex
set, let V : X → R be concave, let x0 be in the interior of X and let
D be a neighbourhood of x0. If there is a concave, differentiable function
W : X → R with W(x0) = V(x0) and W(x) ≤ V(x) for all x ∈ D then V
is differentiable at x0 and,

∇xV(x)|x=x0 = ∇xW(x)|x=x0 .

Proof. Any subgradient p of V(x0) must satisfy for all x ∈ D,

W(x)−W(x0) ≤ V(x)−V(x0) ≤ p(x− x0).

This shows that p is also a subgradient of W. Since W is differen-
tiable, the vector p must be unique and p = ∇xW(x)|x=x0 . This
means that V also has a unique subgradient and,

∇xW(x)|x=x0 = pi = ∇xV(x)|x=x0 .

Theorem 12. Let (X, Γ, F, β) satisfy assumptions of theorem 11 and assume
that F is strictly concave and Γ is convex. Assume that F is C1. Let v be the

38

fixed point of the Bellman operator and let g be the unique optimal value
function. If x0 is in the interior of X and g(x0) is in the interior of Γ(x0),
then v is C1 at x0 and

∇xv(x)|x=x0 = ∇xF(x, a)|(x,a)=(x0,g(x0))
.

Proof. As F is strictly concave and Γ is convex, g is a function. Also,
since g(x0) is in the interior of Γ(x0) and Γ is continuous, g(x0) is in
the interior of Γ(x) for all x in a neighborhood D of x0. Define W on
D by

W(x) = F(x, g(x0)) + βv(g(x0)).

Since F is concave and differentiable, this function is concave and
differentiable in x. Also,

W(x) = F(x, g(x0)) + βv(g(x0)),

≤ max
a∈Γ(x)

F(x, a) + βv(a) = v(x).

with equality at x0. The inequality uses the fact that g(x0) ∈ Γ(x)
for all x ∈ D. The result follows from Benveniste and Sheinkman
theorem.

Euler equations

There is a second more classical mode of attack on the dynamic
optimization problem. This alternative approach is based on first
order conditions. As before, consider the following infinite horizon
optimization problem.

max
x1,x2,...

∞

∑
t=0

βtF(xt, xt+1) s.t. xt+1 ∈ Γ(xt).

Assume that this problem can be solved and has a unique optimal
solution (x∗n)n∈N. Now, consider the following problem,

max
xt+1

F(x∗t , xt+1) + βF(xt+1, x∗t+2) s.t. xt+1 ∈ Γ(x∗t), x∗t+2 = Γ(xt+1).

Given the optimality of x∗t and x∗t+2, we need that x∗t+1 is the optimal
solution to this problem. If F is differentiable and if x∗t+1, x∗t+2 are in
the interior of Γ(x∗t) and Γ(x∗t+1) (so the constraints are not binding),
then we obtain the following first order condition:

∇xt+1 F(x∗t , x∗t+1) + β∇xt+1 F(x∗t+1, x∗t+2) = 0.

This equation is known as the Euler equation. If the solution is inte-
rior, then this condition is necessary for optimality. Usually the set

39

of Euler equations is completed by adding a so called transversality
condition namely,

lim
t→∞

βt∇xt F(x∗t , xt+1) · x∗t ≤ 0.

It can be shown that if the Euler equations are satisfied, F is concave,
∇xF(x, y) > 0, x ≥ 0, and the transversality hold, then it must be
that the solution (x∗0 , x∗1 , . . . , x∗n, . . .) is indeed optimal. To see this, let
(x0, x1, x2, . . .) be another feasible path. If F is concave, then:

T

∑
t=0

βt (F(xt, xt+1)− F(x∗t , x∗t+1)
)
≤

T

∑
t=0

βt∇xt F(x∗t , x∗t+1) · (xt − x∗t) +
T

∑
t=0

βt∇xt+1 F(x∗t , x∗t+1) · (xt+1 − x∗t+1),

= ∇x0 F(x∗0 , x∗1)(x0 − x∗0) +
T−1

∑
k=0

βk+1∇xk+1F(xk+1, xk+2) · (xk+1 − x∗k+1),

+
T

∑
t=0

βt∇xt+1 F(x∗t , x∗t+1) · (xt+1 − x∗t+1),

The first term on the right hand side is zero as x∗0 = x0 is fixed. Then
rearranging terms gives,

T

∑
t=0

βt(F(xt, xt+1)− F(x∗t , x∗t+1)) ≤
T−1

∑
t=0

βt [β∇xt+1F(x∗t+1, x∗t+2) +∇xt+1F(x∗t , x∗t+1)
]
· (xt+1 − x∗t+1),

+ βT∇xT+1F(x∗T , x∗T+1) · (xT+1 − x∗T+1).

The summations in the first line is equal to zero by the Euler equa-
tions. Then:

T

∑
t=0

βt(F(xt, xt+1)− F(x∗t , x∗t+1)) ≤ βT∇xT+1 F(x∗T , x∗T+1) · (xT+1 − x∗T+1),

= βT (−β∇xT+1 F(x∗T+1, x∗T+2)
)
· (xT+1 − x∗T+1)

≤ βT+1∇xT+1 F(x∗T+1, x∗T+2) · x∗T+1.

where we used the Euler equation, the fact that ∇xF(x, y) ≥ 0 and
xt ≥ 0 for all T. Taking T → ∞, the solution is optimal whenever:

lim
T→∞

βT Fx(x∗T , xT+1)x∗T ≤ 0.

which is indeed the case if the transversality condition holds.

As an example, consider the Bellman equation of the optimal
growth problem,

v(k) = max
k′≤Akα

ln(Akα − k′) + βv(k′).

40

The first order condition gives,

1
k′ − Akα

+ βv′(k).

Then from the envelope theorem we get,

v′(k) =
Aαkα−1

k′ − Akα

Updating one period and substitution gives the Euler equation,

−1
kt+1 − Akα

t
+ β

αAkα−1
t+1

kt+2 − Akα
t+1

= 0.

Which is a second order difference equation. The transversality
condition requires that,

lim
t→∞

βt Aαkα
t

kt+1 − Akα
t
≤ 0.

Numerical methods

In the previous chapter we say that the solution of the infinite
horizon dynamic programming problem could be restated in terms
of a solution of the Bellman equation. In many cases there are no
closed form solutions to this Bellman equation41 On the other hand, 41 If there are solutions, they are mainly

used for pedagogical purposes and are
only available in a few special settings.

we have also seen that the unique solution of the Bellman equation
coincides as the fixed point of a contraction mapping: the Bellman
operator. Additionally, this fixed point can be approximated very
precisely by iterating over this operator. In this sense, it is possi-
ble to approximate this fixed point via simulation methods. These
methods are of course finite in nature and provide therefore only an
approximation to the true fixed point.

The simplest method is the value function iteration.

Value function iteration

The contraction mapping theorem tells us that the solution of the
Bellman equation can be found by iterating the Bellman operator T

(Tv)(x) = max
a∈Γ(x)

{F(x, a) + βv(r(x, a))}.

As computers only work with finite things, a first step is to approxi-
mates the state space X using a finite grid for the possible values of
x,

X = {x1, x2, . . . , xn}.

Also the space of all possible actions A must be approximated using
a finite grid:

A = {a1, . . . , am}.

The correspondence Γ : X → A is now replaced by a non-empty
correspondence from the finite set X to the finite set A. Also, the
instantaneous return function F : X × A → R is now a function
from the finite set X× A to R, so it is bounded by definition. Finally,

42

the updating rule r(x, a) must take values from X × A to the finite
set X. It can be shown that when restricted to such finite setting,
the Bellman operator T is still is a contraction mapping.42 As such, 42 Observe that F is bounded, so the

conditions of Definition 11 are satisfied
with φ(x) = 1 which means that the
Bellman operator T : B(X) → B(X)
where B(X) is the set of bounded
functions on X has a unique fixed
point by Blackwell’s theorem. Also, the
corresponding policy correspondence:

G(x) = arg max
a∈Γ(x)

F(x, a) + v(r(x, a)),

is non-empty.

finding, or approximating, the fixed point of T takes the following
steps:

1. Decide on a (fine enough) grid for the state space X and control
space A.43

43 Often the problem can be reformu-
lated such that the control space and
state space coincide, i.e. A = X.

2. Decide on some tolerance level ε > 0.44

44 This should be sufficiently small.

3. Decide on an initial bounded function v0 : X → R. Initiate the
iteration round t = 0.

4. (a) Compute for all x in the finite grid X:

vt+1(x) = max
a∈Γ(x)

{F(x, a) + βvt(r(x, a))}.

So for given x one can compute for all a ∈ Γ(x) the value
F(x, a) + βvt(r(x, a))) and then take the maximum over all
a ∈ Γ(x). Given this value of a, we can save the policy corre-
spondence:

Gt+1(x) = arg max
a∈Γ(x)

{F(x, a) + βvt(r(x, a))}.

(b) Repeat as long as ‖vt+1 − vt‖ = maxx∈X |vt+1(x)− vt(x)| > ε,
each time updating the counter t← t + 1.

5. The final update gives a function vt and policy correspondence
Gt that should be a good approximation to the fixed point of the
Bellman operator and the corresponding policy function.

In order to get a better grasp of the algorithm, let us work out a
particular example. Consider a representative consumer model with
CRRA utility function,45 45 CRRA stands for constant relative risk

aversion. The relative risk aversion of
the utility function u(.) is given by,

− u′′(c)
u′(c)

c.

u(c) =
c1−σ − 1

1− σ
.

The consumer maximizes her infinite horizon discounted utility:

∞

∑
t=0

βtu(ct).

There is a stock of capital kt in period t that she can use to produce
an amount of capital in the next period using a production function
f (kt) = kα

t . There is also a depreciation rate of δ. This gives the
following law of motion:

kt+1 = kα
t − ct + (1− δ)kt.

43

As such, we obtain the following dynamic program:

max
c0,c1,...

∞

∑
t=0

βtu(ct),

s.t. kt+1 = kα
t − ct + (1− δ)kt,

ct ∈ [0, kα
t − (1− δ)kt],

k0 given

To make our lives a bit easier, we cancel the variable ct from this
problem:

max
k1,k2,...

∞

∑
t=0

βtu(kα
t + (1− δ)kt − kt+1),

s.t. kt+1 ∈ [0, kα
t + (1− δ)kt],

k0 given

The Bellman operator for this problem is given by:

(Tv)(k) = max
k′∈[0,kα+(1−δ)k]

{
u(kα + (1− δ)k− k′) + βv(k′)

}
.

In particular, using the CRRA utilty function, we obtain:

(Tv)(k) = max
k′∈[0,kα+(1−δ)k]

{
(kα + (1− δ)k− k′)1−σ − 1

1− σ
+ βv(k′)

}
.

Our aim is to write a program that computes the fixed point of T by
sequentially computing v1 = Tv0, v2 = Tv1, . . .

1. First of all, we need to initialize some parameters. Let’s pick the
values:

σ = 1.5, δ = 0.1, β = 0.95, α = 0.3.

We also need to set the threshold for convergence which is a small
number, say ε = 10−3.

2. Next, we need to decide on a grid size, N, say N = 1000.

3. The grid size determines the number of values that we consider
for our state variable, i.e. capital stock. As such, we intialize a
vector K = [k1, . . . , kN] of size 1000, say equally spaced between 0

and 5. The vector K represents our state space.

4. Next, we need to initialize the value function v and the updated
value function Tv. These two things can easily be enoded using
N-dimensional vectors V = [v1, . . . , vN] where V[i] ≡ v(ki)

gives the value of v at state ki and TV = [Tv1, . . . , TvN] where
TV[i] ≡ Tv(ki) gives the value of the function (Tv) at state ki.

44

5. Finally, we need to encode the policy correspondence (or function)
g. We will do this by representing g as an N-dimensional vector of
integers G = [g1, . . . , gN]. The idea is that the ith component of g is
equal to j, i.e. G[i] = j if the value of g at state ki is given by k j, i.e.
g(ki) = k j. In other words, if G[i] = j then at ki it will be optimal to
set the next state equal to k j.

6. Let’s now go to the main part of the program. This embeds a loop
that computes for each iteration the next update of the Bellman
operator, i.e. given v, it computes Tv, until we have that:

‖TV −V‖ = max
i
|TV[i]−V[i]| < ε.

We program this as a while loop that iterates until this condition is
satisfied.

7. Inside the loop we first have to update the value of V to TV.
Notice that in order to do this, we first need to assign the value of
TV to V (V ≡ TV).

8. Next, we need to compute the new values of TV[i] = Tv(ki) for
all states ki in the grid. In order to do this, we iterate through the
values i = 1, . . . N and compute each time the values of TV[i] and
G[i]. This can be done using a For-loop.

Given a particular value ki (i.e. in the i-th iteration of the For-loop),
we construct the values of the function,

f (k′) =

{
(kα

i +(1−δ)ki−k′)1−σ−1
1−σ + βv(k′) if k′ ≤ kα

i + (1− δ)ki,
−C if k′ > kα

i + (1− δ)ki

where C is a very big number. This can be done by constructing an
N-dimensional vector Fi = [f (ki), . . . , f (kN)].

9. Next, the aim is to find the maximal element of the vector F. This
maximal element will be the value TV[i] = maxj Fi[j]. The index j
at which this element is found, will be the new value of G[i].

10. Don’t forget to close the for and while loops.

Try to count the number of iterations that the program need in order
to converge (i.e. the number of iterations of the While-loop) and the
time it takes to converge.

Figures 1, 2 and 3 give a plot of the policy function, the value
function and the optimal level of consumption as functions of k.

The convergence rate of the Bellman operator has a rate of β. For
many economic models, it is natural to choose β close to 1. Conver-
gence of value function iteration method is particularly slow if β is
chosen to be close to one.

Figure 1: Present capital stock versus
next periods capital stock.

Figure 2: Value function.

Figure 3: Consumption as a function of
capital.

45

Interpolation

The speed of the value function iteration depends on the size of
the grid X. The larger X the more values of Tv(x) we need to com-
pute, and each involves an optimization procedure. A first possible
improvement for the speed of the algorithm is to decrease the size
of this grid. However, we still would like to have a reasonable good
estimate of the value of Tv(k):

(Tv)(x) = max
a∈Γ(x)

{F(x, a) + βv(r(x, a))}.

Keeping x fixed, the quality of this estimate will depend on the grid
size of A. The problem, however, is to obtain the value v(r(x, a)) on
the right hand side. If v is only known on the finite grid X. In other
words, it might be the case that r(x, a) takes on a value that is not
in this grid, which means that we cannot evaluate v(r(x, a)) for this
particular value of a and x.

In our example, we had the Bellman operator:

(Tv)(k) = max
k′≤kα+(1−δ)k

(kα + (1− δ)k− k′)1−σ − 1
1− σ

+ βv(k′).

Here, we have a small grid K but we would like to perform the
maximization using a finer grid for k′. As such, we need to evaluate
v(k′) also for values k′ /∈ K. The main change in our algorithm will
therefore take place in step 8 of our algorithm. The function,

f (k′) =

{
(kα

i +(1−δ)ki−k′)1−σ−1
1−σ + βṽ(k′) if k′ ≤ kα

i + (1− δ)ki,
−C if k′ > kα

i + (1− δ)ki

is now computed on a denser grid. As such, the dimension for f will
be larger than N. The function ṽ(k′) is computed using interpolation
of v on the N-dimensional vector v. As an example, let us put the
grid for the k equal to 20 and let the denser grid be equal to 1000.
Adjust the code as indicated above using, for example, linear interpo-
lation. After how many rounds does the code converge? What is the
time of convergence?

The increase in speed is maily due to the large decrease of the
grid size. Unfortunately, the value function is now only known at a
smaller number of points and the interpolation function might be
a bad guess for true value function. It is also not possible to prove
convergence of the algorithm and convergence might even fail if, for
example, the interpolation function is not well chosen.

Howard improvement (policy iteration)

46

The most important factor that determines the speed of
the value function iteration algorithm is the optimization routine.
Optimization is costly. Therefore, computational improvements
should be aimed at reducing the number of times the optimization
routine is called. This is the idea behind the Howard improvement
algorithm. Let H be the set of all potential policy functions:

H = {h : X → A : g(x) ∈ Γ(x)}.

For any g ∈ H, we can define an operator Rg such that,

(Rgv)(x) = F(x, g(x)) + βv(r(x, g(x))).

This operator determines the value function resulting from using g
as the choice variable. It is easily verified that the operator Rg from
B(X) to B(X) satisfies the conditions of Blackwell’s theorem so it has
a fixed point which can be obtained by iteration. This fixed point
satisfies the condition:

v(x) = F(x, g(x)) + βv(r(x, g(x)))

which means that it computes the value of the infinite horizon prob-
lem under the constraint that the policy function g is used in every
period. Importantly, the computation of this fixed point does not
require any optimization routine, so it should be quickly to compute.

The Howard improvement procedure takes the following form.

1. Decide on a grid X and A.

2. Pick any value function v0.

3. initiate the loop at t = 1 for all t, do the following

(a) Find the policy function gt such that,

gt(x) = arg max
a∈Γ(x)

F(x, a) + βvt−1(r(x, a)).

(b) find vt as the unique fixed point of Rgt , i.e.

vt(x) = F(x, gt(x)) + βvt(r(x, gt(x))).

(c) iterate steps (a) and (b) each time updating t ← t + 1, until
convergence is met: ‖vt − vt−1‖ < ε.

The Howard algorithm first converges on the value function given the
policy function gt. Once this function is found, the policy function
gt is updated using a maximization step. The advantage of this
algorithm is that it requires fewer optimization iterations. Given that
this is the most costly step, the algorithm is usually (much) faster.

The following theorem shows the validity of the Howard improve-
ment algorithm.

47

Theorem 13. The sequence of functions (vt)t∈N of the Howard algorithm
converges to the fixed point of the Bellman operator T.

Proof. Let T be the Bellman operator and let Rg be the policy func-
tion iterator for a given a policy function g ∈ H. Let vn be the policy
function obtained by the nth step of the algorithm. We will show that

v0 ≤ Tv0 ≤ v1 ≤ Tv1 ≤ . . .

This is an increasing sequence in a bounded set,46, so this sequence 46 Notice that X is a finite grid, so the
number of distinct policy functions is
finite.

converges to the value supt vt which is a fixed point of the Bellman
operator T.

Let us first show that for all t, Tvt ≥ vt. Indeed,

(Tvt)(x) = max
a∈Γ(x)

F(x, a) + βvt(r(x, a)),

≥ F(x, gt(x)) + βvt(r(x, gt(x))) = vt(x).

The last equality follows from the fact that vt is a fixed point of the
operator Rgt , so:

vt(x) = F(x, gt(x)) + βvt(r(x, gt(x))).

Next, we can show that (Tvt) = (Rgt+1 vt). Indeed, by definition of
gt+1, we have:

(Tvt)(x) = F(x, gt+1(x)) + βvt(r(x, gt+1(x))) = (Rgt+1 vt)(x).

Then, if we iterate Rgt+1 a second time, we get:

(R2
gt+1

vt)(x)− (Rgt+1 vt)(x) =F(x, gt+1(x)) + β(Rgt+1 vt)(r(x, gt+1(x))),

− F(x, gt+1(x))− βvt(r(x, gt+1(x))),

= β [(Tvt)(r(x, gt+1(x)))− vt(r(x, gt+1(x)))] ≥ 0.

where the last inequality follows from the fact that Tvt ≥ vt. This
shows that (R2

gt+1
vt) ≥ Rgt+1 vt = Tvt.

Now let vt+1 be the fixed point of (Rgt+1 vt). We will show that
vt+1 ≥ Tvt. In order to do this, we show that (Rm

gn+1
vt) ≥ (Rm−1

gn+1
vt)

for all m ≥ 2. As vt+1 is the limit of (Rm
gt+1

vt) for m going to infinity,
this proves the assertion.

For m = 2, the proof is given above. Now for the induction step,
we have:

(Rm
gt+1

vt)(x) ≥ (Rm−1
gt+1

vt)(x),

↔F(x, gt+1(x)) + β(Rm−1
gt+1

vt)(r(x, gt+1(x))) ≥ F(x, gt+1(x)) + β(Rm−2
gt+1

vt)(r(x, gt+1(x)),

↔(Rm−1
gt+1

vt)(r(x, gt+1(x))) ≥ (Rm−2
gt+1

vt)(r(x, gt+1(x))).

48

which is indeed true by the induction hypothesis. Given that vt+1 =

limm(Rm
gt+1

vt), we have that

vt+1 ≥ (Rgt+1 vt) = Tvt,

as was to be shown.

The Howard algorithm can be implemented by using a call to a
new function that computes the fixed point of the policy function
mapping after each optimization routine of the value function itera-
tion (i.e. after each For-loop iteration).

In order to compute the fixed point of the policy function, one can
take the following steps.

1. Let the policy function G and the value function TV be the output
of the maximization step of the value function iteration.

2. Initialize vectors W and RW = V

3. Do the following until ‖W − RW‖ < ε.

4. assign W = RW and compute the updated value for RW:

RW[i] =
(kα

i + (1− δ)K[i]− K[G[i]])1−σ − 1
1− σ

+ βW[G[i]].

Here we use index notation, where K[G[i]] uses the index in G[i] to
get to the element G[i] = j whenever g(ki) = k j. The same goes for
W[G[i]].

5. Close the while loop

6. Assign the updated value TV = W.

Compute the number of times the outer value function While-loop
iterates until convergence and compute the time it takes to converge.

Instead of using a loop to compute the fixed point of Rg, it is
sometimes possible to explicitly solve this step. Observe that the
fixed point of the operator Rg satisfies,

v(k) = F(k, g(k)) + βv(g(k)).

This can be written in vector notation as,

V = F(K, K[G]) + βQV.

where Q is an N × N matrix with a 1 at position i, j if and only if
G[i] = 1. This system can be solved for V,

V = (I − βQ)−1F(K, K[G]).

49

This necessitates the inversion of the matrix I − βQ, which is computa-
tionally also costly (especially if the size of the grid is large). So it is
not always the case that this gives a more efficient way of computing
the fixed point of Rg.

Try to code the policy function iteration in this alternative way. For
this, you first need to compute the matrix Q and invert (I − βQ).

Some applications

Let us have a look at some applications of dynamic programming
under certainty.

Optimal tree growth

Consider a tree whose growth is described by a function h :
R+ → R+. In particular, if kt is the length of the tree in period t
then kt+1 = h(kt) is the height of the tree tomorrow. Assume that the
price of wood is one per meter of tree, and the interest rate r are both
constant over time. Set β = 1/(1 + r). It is costless to cut down the
tree.

If the tree cannot be replanted, the problem in each period is either
to cut the tree or not. If the tree is cut in period t then the value is
given by v(kt) = kt and there is no value thereafter. If the tree is not
cut in period t then the value is given by v(kt) = βv(h(kt)). Each
period, the problem is either to cut the tree or not. As such,

v(kt) = max
c={0,1}

{ktc + (1− c)βv(h(kt))}.

Here c is a binary variable that decides whether to cut the tree or not.
Observe that his problem can be rewritten as,

v(kt) = max{kt; βv(h(kt))}.

The first choice is taken when the tree is cut while if the second
option is take the tree is not cut. Assume that there is a maximum
height that the tree can take, k ∈ [0, H].

Theorem 14. The operator (Tv)(k) = max{k, βv(h(k))} is a contraction
mapping from the set of bounded functions B([0, H]) to B([0, H]).

Proof. We check Blackwell’s theorem. If v ≤ w then

(Tv)(k) = max{k, βv(h(k))} ≤ max{k, βw(h(k))} = (Tw)(k),

52

which shows monotonicity. For additivity,

(Tv + a)(k) = max{k, β(v + a)(h(k))},
= max{k, βv(h(k)) + βa},
≤ max{k + βa, βv(h(k)) + βa} = (Tv)(k) + βa.

As such, we know that T has a fixed point. In order to get an
idea of the shape of v, we start by a simulation. We set H = 15 and
consider a grid of fifteen values of k = 1, 2, . . . , 15. We specify h(k) =
k + 0.25(H − k) so every period the growth of the tree equals one
fourth of the distance between its height and the maximal height.47 47 I don’t know if this is realistic but it

leads to a concave growth path.The value function is given in Figure 4. We see that for low values of
k, v(k) is above the diagonal, which means that the tree will not be
cut.

v(k) > k.

For high values of k, we have that v(k) = k, which means that the
tree will be cut. This indicates that there probably is a unique cutoff
height k∗ that determines the minimal height for the tree to be cut.

Figure 4: Value function and main
diagonal.

At k∗, the decision maker should then be indifferent between
cutting the tree or not. As such, k∗ should satisfy the condition:

k∗ = βv(h(k∗)).

In addition h(k∗) ≥ k∗ so we know that (if we adhere to the conjec-
ture), for height k′ = h(k∗), the tree will also be cut, i.e. v(k′) = k′. As
such:

k∗ = βv(h(k∗)) = βh(k∗),

→ h(k∗)
k∗

= 1/β.

The left hand side gives the proportional growth of a tree of height k∗.
The right hand side gives the interest rate (1 + r) = 1/β, i.e. the cost
of waiting. If the left hand side is greater than the right hand side, it
will be optimal not to cut the tree. Otherwise, cutting is optimal.

The following puts an assumption on the function h(k) that guar-
antees that this reasoning is correct:

Assumption 1. Assume that there is a unique k∗ ∈ [0, H] such that,

• if k > k∗ then h(k)
k < 1

β

• if k < k∗ then h(k)
k > 1

β .

Theorem 15. If assumption 1 is satisfied, then it is optimal to cut the tree
for all k ≥ k∗.

53

Proof. Consider the fixed point v∗ of the Bellman operator. We need
to show that v∗(k) = k whenever k ≥ k∗, i.e. it is optimal to cut the
tree if k ≥ k∗. First, notice that the Bellman operator T with

(Tv) = max{k, βv(h(k))}.

is a contraction mapping. Let

C = {v ∈ B([0, H]) : ∀k ≥ k∗, v(k) = k}.

Let us first show that C is a closed set. Let (vn)n∈N be a sequence in
C and vn

n→ v. Now, if k ≥ k∗ then for all n, vn(k) = k, so by taking
limits: v(k) = k.

As such, if we can show that T(C) ⊆ C, we know that the fixed
point of T is in the set C, so v∗ satisfies the desired condition.

Let v ∈ C. We need to show that Tv ∈ C or equivalently, for all
k ≥ k∗, (Tv)(k) = k. Assume that k ≥ k∗. Then,

(Tv)(k) = max{k, βv(h(k))}.

we know that h(k) ≥ k ≥ k∗, and v ∈ C, so v(h(k)) = h(k). This gives,

(Tv)(k) = max{k, βh(k)}.

As k ≥ k∗ we also know that, by assumption, h(k)
k < 1/β, so,

(Tv)(k) = max{k, βh(k)} = k.

As such, Tv ∈ C as was to be shown.

The next result states that it is not optimal to cut the tree if k < k∗.

Theorem 16. If assumption 1 is satisfied, then for all k < k∗ it is better to
wait.

Proof. As before let v∗ be the fixed point of the Bellman operator. We
need to show that for k < k∗, βv∗(h(k)) > k.

Let us first show that the fixed point v∗ is a non-decreasing
function: if k ≥ k′ then v(k) ≥ v(k′). Let C = {v ∈ B([0, H]) :
v is non-decreasing}. This is a closed set. As such, in order to show
that v∗ is non-decreasing, it suffices to show that T(C) ⊆ C. Towards
this end, let v ∈ C, i.e. v is non-decreasing. Then, if k ≥ k′,

(Tv)(k) = max{k, βv(h(k))} ≥ max{k′, βv(h(k′))} = (Tv)(k′).

which establishes the proof: v∗ ∈ C.
Let

D = {v ∈ B([0, H]) : v is nondecreasing and ∀k ≤ k∗, βv(h(k)) ≥ k}.

54

and let

D′ = {v ∈ B([0, H]) : f is nondecreasing and ∀k < k∗ : βv(h(k)) > k}.

The set D is clearly closed. As such, if we can show that T(D) ⊆ D′,
we know that the fixed point v∗ should be in the set D′ which we
wanted to show.

So let v ∈ D (i.e. v is non-decreasing and for all k ≤ k∗, βv(h(k)) ≥
k) then we need to show that (Tv) is non-decreasing and k < k∗

implies β(Tv)((h(k)) > k. Above, we already showed that T maps
non-decreasing functions to non-decrasing functions. For the second
part, let k < k∗. We need to show that β(Tv)(h(k)) > k. Now,

(Tv)(h(k)) = max{h(k), βv(h(h(k)))} ≥ max{h(k), βv(h(k))}.

The inequality follows from the fact that v is a non-decreasing func-
tion, so h(h(k)) ≥ h(k) implies v(h(h(k))) ≥ v(h(k)). As v ∈ D, we
also know that βv(h(k)) ≥ k, so

(Tv)(h(k)) ≥ max{h(k), βv(h(k))} ≥ max{h(k), k} = h(k).

Finally given that k < k∗, by assumption 1 we know that h(k)
k > 1/β,

so

(Tv)(h(k)) ≥ h(k) > k/β.

which is equivalent to β(Tv)(h(k)) > k, so (Tv) ∈ D′.
We conclude that v∗ ∈ D′.

Above two results show that if assumption 1 is satisfied. Then
there is a unique k∗(= h(k∗)/β) such that for all k < k∗ the tree is not
cut and for all k ≥ k∗ the tree will be cut.

Optimal policy business cycles

The effectiveness of monetary economic policy depends on the
expectations of the agents in the economy. Assume that the deviation This model is borrowed from Gins-

burgh and Michel, 1998, Optimal policy
business cycles, Journal of Economic
Dynamics and Control.

of yt which is the log of output from its natural level y∗ is given by
the following Philips curve:

(yt − y∗) = γ(πt − πe
t),

where πt and πe
t are the actual and expected rate on inflation in

period t. Here γ > 0. This claims that only unexpected inflation can
push output above its natural level. The policy maker’s objective in

55

each period is given by a trade off between more output and less
inflation:

g(yt, πt) = α(yt − y∗)− π2
t

2
= αγ(πt − πe

t)−
π2

t
2

.

The forward looking government has a discount factor δ so the
problem is to maximize:

∞

∑
t=0

δt
(

αγ(πt − πe
t)−

π2
t

2

)
.

If agents have rational expectations then expected inflation equals
actual inflation, so πe

t = πt and therefore yt = y∗. In this case, the
optimal policy is to set πt = 0 at every point in time. Now, assume
that not all agents have rational expectations. Some agents have
adaptive expectations in the sense that:48 48 For example, they form expectations

that are adaptive.
πa

t+1 = λπt + (1− λ)πa
t ,

where λ ∈ (0, 1]. Assume that a proportion xt of agents use rational
expectations while a fraction (1− xt) form adaptive expectations.
We assume that the average expected rate of inflation is a weighted
average of the rates expected by rational and adaptive agents:

πe
t = xπt + (1− x)πa

t .

then,
∞

∑
t=0

δt
(

αγ(πt − πe
t)−

π2
t

2

)
,

=
∞

∑
t=0

δt
(

αγ(1− x)(πt − πa
t)− δt π2

t
2

)
.

The government will try to set πt such as to maximize this payoff.
The Bellman equation is:

v(πa
t) = max

π

{
αγ((1− x)(πt − πa

t)−
π2

t
2

+ δv(λπt + (1− λ)πa
t)

}
.

Let us try to derive the Euler equations. Let qt = v′(πa
t) then the first

order condition and envelope theorem give:

qt = −αγ(1− x) + δ(1− λ)qt+1,

0 = αγ(1− x)− πt + δλqt+1.

So, eliminating the qt, qt+1 variables gives:

πt−1 − αγ(1− x)
δλ

= −αγ(1− x) + δ(1− λ)
πt − αγ(1− x)

δλ
,

↔πt−1 − αγ(1− x) = −αγ(1− x)δλ + δ(1− λ)πt − αγ(1− x)δ(1− λ),

↔πt−1 − δ(1− λ)πt = αγ(1− x)(1− δ),

↔πt −
πt−1

δ(1− λ)
= −αγ(1− x)(1− δ)

δ(1− λ)
.

56

This is an explosive difference equation, so the only solution is the
one at the steady state, where

π∗ =
αγ(1− x)(1− δ)

1− δ(1− λ)
.

Now let us endogeneize the share of rational agents xt. Assume
that at time t decisions are made at no cost on the basis of adaptive
expectations πa

t . An agent θ can modify this decision at a fixed cost
c using the new information πt. There is a continuum of agents
θ ∈ [0, 1]. Agent θ makes a cost equal to θ(πa

t − πt)2 when he uses πa
t

instead of πt. let θt be defined by,

θt(π
a
t − πt)

2 = c.

The loss of agent θ is larger than c if θ ≥ θt. and the proportion xt of
agents that decide to change their decision is,

xt = x(πa
t , πt) = max{0, 1− c(πa

t − πt)
−2}.

The Bellman equation is now,

v(πa
t) = max

πt

{
β(1− xt)(πt − πa

t)−
π2

t
2

+ δv(λπt + (1− λ)πa
t)

}
,

s.t. xt = max{0, 1− c(πa − πt)
−2}.

The model is a bit daunting to analyze analytically, so we will
resort to a simulation exercise. We use parameter values β = 0.1,
c = 0.0001, λ = 0.75 and δ = 0.95. Also, we use grid of 1000 values
of πa between −0.1 and 0.05. Figure 5 plots πa

t+1 against the value of
πa

t . The stable state is situated at the point where the curve intersects
with the diagonal. One sees that below the steady state the best
response is above the diagonal. So, πa increases over time. Suddenly
the best response drops to below the diagonal. This shows that πa

will show cyclical behaviour. It will gradually increase and then
suddenly drop to a lower value after which it will start increasing
again.

Figure 5: Value of πa
t+1 against the

value of πa
t .

Figure 6 shows a the evolution of inflation over time. Here the
cyclical behaviour is clearly visible. For this example, we have cycles
of length 6. In 5 periods, inflation increases stepwise. In the sixth
period inflation drops again to its starting value.

Figure 6: Evolution of π over time.

Stochastic dynamic programming

Intuitively, a stochastic dynamic program has the same compo-
nents as a deterministic one. The only (major) difference is that the
transition that governs the process of going from one state to another
is no longer certain. When transitions occur probabilistically, states
and decisions today lead to a distribution over possible states in the
future.

As before, we use X to be the set of states and let A be the set
of actions. Also similar as before, we define a correspondence Γ :
X → A that determines which actions the agent can take for a given
state x ∈ X. In the deterministic case, the state in the next period
was given by the function r(x, a). This is no longer the case in the
stochastic world. Instead of the transition function we now introduce
a Markov transition kernel.

Q(B, (x, a)),

Here Q(B, (x, a)) gives the probability that the state in the next
period is in the set B ⊆ X if the state today is x and the action taken
today is a.49 Notice that the probability law of the state tomorrow 49 Formally, Q(B, (x, a)) is a kernel if

Q(., (x, a)) is a probability measure for
all (x, a) and Q(B, .) is a measurable
function for all measurable sets B.

only depends on the state and action taken today. It does not depend
on what happened before today. A process that does not depend on
the past, given the present is called a Markov process.

If f : X → R is a payoff function then the expected value of f
tomorrow if (x, a) is the current state and a ∈ Γ(x) is chosen is given
by: ∫

X
Q(dx̃, (x, a)) f (x̃)

As before, a policy function g : X → A, determines for each state
x ∈ X an action a ∈ Γ(x) taken by the decision maker. Assume that
the current state is x0. Then if the decision maker follows the policy
rule g, the next period’s expected payoff is given by,

E0[βF(x1, g(x1)|x0, g] =
∫

X
Q[dx1, (x0, g(x0))]βF(x1, g(x1)).

58

Here we write the expectation conditional on x0 and the policy
function g. The expected payoff within two periods F two periods
from now is given by,

E0[β
2F(x2, g(x2)|x0, g],

=
∫

X
Q[dx1, (x0, g(x0))]

∫
X

Q[dx2, (x1, g(x1)]β
2F(x2, g(x2)).

The expected payoff for the first n periods is then determined by,

un(g) = E0

[
n

∑
t=1

βtF(xt, g(xt))

∣∣∣∣∣x0, g

]
,

= F(x0, g(x0) +
∫

X
Q[dx1, (x0, g(x0))]βF(x1, g(x1),

+
∫

X
Q[dx1, (x0, g(x0)]

∫
X

Q[dx2, (x1, g(x1)]β
2F(x2, g(x2)).

+ . . . ,

+
∫

X
Q[dx1, (x0, g(x0)]

∫
X

Q[dx2, (x1, g(x1)]
∫

X
. . .
∫

X
Q[dxn, (xn−1, g(xn−1))]β

nF(xn, g(xn).

Let u∞(g) = limn un(g), if it exists. The aim of the decision maker is
to find a policy function g to maximize u∞(g),50 50 Observe that we have not showed yet

that this maximization problem is well
defined.max

g
u∞(g).

The aim of this chapter is to relate the solution of this problem (if it
exists) to the solution of the following functional equation,

v(x) = max
a∈Γ(x)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]v(x̃)
}

,

= max
a∈Γ(ω)

{F(x, a) + E [v(x̃)|x, a]}

This is the Bellman equation for the stochastic problem. It is related
to the following Bellman operator T,

(Tv)(x) = max
a∈Γ(ω)

{F(x, a) + βE [v(x̃)|x, a]} ,

= max
a∈Γ(ω)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]v(x̃)
}

,

Definition 13 (regularity). The stochastic dynamic programming problem
(X, A, Γ, F, β, Q) is regular if the instantaneous payoff function F : X ×
A→ R is continuous, the transition function Γ : Ω→ X is non-empty and
continuous and there exists a continuous function φ : Ω→ R++ such that,

1. There exists an M ≥ 0 such that for all x ∈ X,

max
a∈Γ(x)

|F(x, a)| ≤ Mφ(x).

59

2. There exists a θ ∈ (0, 1) such that for all x ∈ X,

β max
a∈Γ(x)

∫
X

Q[dx̃, (x, a)]φ(x̃) ≡ β max
a∈Γ(x)

E[φ(x̃)|x, a] ≤ θφ(x).

3. If f : X → R is continuous and f ∈ Bφ(X), then:

R(x, a) =
∫

X
Q[dx̃, (x, a)] f (x̃) ≡ E[f (x̃)|x, a].

is also continuous. Condition 4 is called the Feller condi-
tion.

Theorem 17. If the problem (X, A, Γ, F, β, Q) is regular then the Bellman
operator maps Bφ(X) into Bφ(X) and is a contraction mapping.

Proof. Let v ∈ Bφ(X). We have that:

(Tv)(x) = max
a∈Γ(x)

{F(x, a) + E[v(x̃)|x, a]}

By the regularity properties and condition (3), the objective function
is continuous. As Γ(.) is also continuous, we have that the optimiza-
tion problem is well defined and (TV)(x) is a continuous function.

Let us show that T maps Bφ(X) into Bφ(X), i.e. ‖TV‖φ is bounded.
In order to see this, observe that,

|(Tv)(X)| =
∣∣∣∣ max
a∈Γ(x)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]v(x̃)
}∣∣∣∣ ,

≤ max
a∈Γ(x)

|F(x, a)|+ β max
a∈Γ(x)

∫
X

Q[x̃, (x, a)]|v(x̃)|,

≤ max
a∈Γ(x)

|F(x, a)|+ β max
a∈Γ(x)

∫
X

Q[dx̃, (x, a)]‖v‖φφ(x̃),

≤ Mφ(x) + θ‖v‖φφ(x),

= (M + ‖v‖φθ)φ(x).

so ‖(Tv)‖φ is bounded by M + ‖v‖φθ which is finite.
For a contraction mapping, we verify Blackwell’s conditions. For

monotonicity, let v ≥ w then

(Tv)(x) = max
a∈Γ(x)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]v(x̃)
}

,

≥ max
a∈Γ(x)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]w(x̃)
}

,

= (Tw)(x).

For additivity,

(T(v + αφ))(x) = max
a∈Γ(ω)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)](v + αφ)(x̃)
}

,

≤ (Tv)(x) + βα max
a∈Γ(x)

∫
X

Q[dx̃, (x, a)]φ(x̃),

≤ (Tv)(ω) + θαφ(x),

as was to be shown.

60

Now, let’s go back to our original problem,

max
g

u∞(g).

We will relate the solution to this problem with the fixed point of the
Bellman operator.

Lemma 7. Let (X, A, F, Γ, β, Q) be a regular problem. Let g : X → A
be a policy function (i.e. g(x) ∈ Γ(x)). Then u∞(g) exists and the set
{u∞(g) : g is a policy function} is bounded from above.

Proof. For a given policy function g, we have that:

un(g) =
n

∑
t=0

E[βtF(xt, g(xt))|x0, g].

Consider the t-th term in this summation:

E[βtF(xt, g(xt))|x0, g] = βt
∫

X
Q[dx1, (x0, g(x0))] . . .

∫
X

Q[dxt, (xt−1, g(xt−1))]F(xt, g(xt)).

We will establish an upper bound on this term. First, take the inner-
most integral:∫

X
Q[dxt, (xt−1, g(xt−1))]F(xt, g(xt)) ≤

∫
X

Q[dxt, (xt−1, g(xt−1)]|F(xt, g(xt))|,

≤
∫

X
Q[dxt, (xt−1, g(xt−1))]Mφ(xt),

≤ M
θ

β
φ(xt−1)

Then taking the two inner integrals,∫
X

Q[dxt−1, (xt−2, g(xt−2))]
∫

X
Q[dxt, (xt−1, g(xt−1))]F(xt, g(xt)),

≤
∫

X
Q[dxt−1, (xt−2, g(xt−2))]M

θ

β
φ(xt−1),

≤ M
θ2

β2 φ(xt−2).

Iterating over all integrals, gives that this t−th term satisfies:

E[βtF(xt, g(xt))|x0, g] ≤ βt M
θt

βt φ(x0) = Mθtφ(x0).

Now let us show that un(g) is a Cauchy sequence. Using the bound

61

established above, we have that:

|un(g)− um(g)| =
n

∑
t=m+1

E[βtF(xt, g(xt))|x0],

≤
n

∑
t=m+1

βtE [|F(xt, g(xt))||x0] ,

≤
n

∑
t=m+1

Mθtφ(x0),

= Mφ(x0)
n

∑
t=m+1

θt

≤ Mφ(x0)
θm+1

1− θ
→m 0.

This shows that (un(g))n∈N is Cauchy, so the sequence converges,
which means that u∞(g) exists.

Next, let us show that the fixed point of the Bellman operator is
greater than any u∞(h).

Lemma 8. Let (X, A, F, Γ, β, Q) be a regular problem. Let g be a policy
function and let v be the fixed point of the Bellman operator, then v(x0) ≥
u∞(g).

Proof. We have that,

v(x0) ≥ F(x0, g(x0)) + β
∫

X
Q[dx1, (x0, g(x0)]v(x1),

≥ F(x0, g(x0)) + β
∫

X
Q[dx1, (x0, g(x0))]F(x1, g(x1)),

+ β2
∫

X
Q[dx1, (x0, g(x0))]

∫
X

Q[dx2, (x1, g(x1))]v(x2),

= . . .

= un(g) + βn+1
∫

X
Q[dx1, (x0, g(x0))]...

∫
X

Q[dxn+1, (xn, g(xn))]v(xn+1).

Taking the limit to infinity, the first term goes to u∞(g). So we only
need to show that the second term goes to zero. However, the inner
integral is bounded by,∫

X
Q[dxn+1, (xn, g(xn))]v(xn+1),

≤ ‖v‖φ

∫
X

Q[dxn+1, (xn, g(xn))]φ(xn+1),

≤ ‖v‖φ
θ

β
φ(xn)

Iterating further over all other integrals finally gives that the term is
bounded from above by:

βn+1‖v‖φ
θn+1

βn+1 φ(x0)

62

This goes to zero as n→ ∞.

For x ∈ X and the fixed point v of the Bellman operator, define the
policy function g∗(x) as,

g∗(x) ∈ arg max
a∈Γ(x)

{
F(x, a) + β

∫
X

Q[dx̃, (x, a)]v(x̃)
}

.

Lemma 9. Let (X, A, F, Γ, β, Q) be a regular problem, then v(x0) =

u∞(g∗).

Proof. We have that,

v(x0) = F(x0, g∗(x0)) + β
∫

X
Q[dx1, (x0, g∗(x0))]v(x1),

= F(x0, g∗(x0)) + β
∫

X
Q[dx1, (x0, g∗(x0))]F(x1, g∗(x1)),

+ β2
∫

X
Q[dx1, (x0, g∗(x0))]

∫
X

Q[dx2, (x1, g∗(x1))]v(x2),

= . . . ,

= un(g∗) + βn+1
∫

X
Q[dx1, (x0, g∗(x0))]...

∫
X

Q[dxn+1, (xn, g∗(xn))]v(xn+1).

Taking the limit to infinity, the first term goes to u∞(g∗). So we only
need to show that the second term goes to zero. However, the inner
integral is bounded by,∫

X
Q[dxn+1, (xn, g∗(xn))]v(xn+1),

≤ ‖v‖φ

∫
X

Q[dxn+1, (xn, g∗(xn))]φ(xn+1),

≤ ‖v‖φ
θ

β
φ(xn)

Iterating further over all other integrations gives finally, that the term
is bounded from above by,

‖v‖φθn+1φ(x0)

This goes to zero as n→ ∞.

Simulations for models of uncertainty

Let us first look at a very simple model of optimal growth with
stochastic shocks. We take the utility of the consumer to be u(c) =

ln(c + 1). Output is produced using outputs in the previous period net
of consumption. In particular, the output in period t + 1 is given by,

yt+1 = η(yt − ct)
α,

where η is a stochastic (random) shock with distribution P, realized
in period t + 1. We assume that the values of η are i.i.d. over time. The
maximization problem reads:

max
∞

∑
t=0

E
(

βt ln(ct + 1)|x0
)

,

s.t. ct ≤ yt,

yt+1 = η(yt − ct)
α.

This gives rise to the Bellman equation:

v(y) = max
c≤y

(
ln(c + 1) + β

∫
R

P(dη)v(η(y− c)α)

)
.

Simulation of this model is analogues as for the case under certainty.
The only difference is here to estimate the integral. This can be done
using Monte-Carlo simulation.

• Draw a large number of random variables η1, . . . , ηN according to
the distribution P.

• Compute the mean,

1
N

N

∑
n=1

v(ηn(yt − ct)
α).

Here v(ηn(yt − ct)α) should be computed by interpolation.

For the algorithm, it is important to draw the values of η1, η2, . . . be-
fore entering the loop on the function value iteration. This guarantees

64

the convergence of the algorithm. If you draw for each loop new
random values, convergence is not guaranteed.

Try to code this problem using Howard improvement assuming
that η = eµ+sε where ε has a standard normal distribution. You can
use the parameters

α = 0.4, β = 0.96, µ = 0, s = 0.1

Take a grid size of 100 and let the values of y be equally spaced
between 0 and 7. Compute the mean based on a sample of 1000

draws of η.

The previous example was rather easy in the sense that the value
function (and policy function) where independent of the stochastic
component. In particular P did not depend on the state or the action
taken. In more interesting examples, however, this is no longer the
case. Let’s consider a growth model with a representative consumer
with utility function u(c) = c1−σ−1

1−σ . Capital is accumulated according
to the law of motion:

kt+1 = eskα
t − ct + (1− δ)kt.

Here s is a random variable that takes on two possible values s1 and
s2. If the state is s1, then output is multiplied by es1 if the state is s2,
output is multiplied by s2. The transition probability between the
states over time is determined by a Markov transition matrix:

Π =

[
π1 1− π1

1− π2 π2

]
.

Here πi is the probability of being in ai next period, given that ai is
the current state. The optimization problem is then,

max
∞

∑
t=0

βtE

(
c1−σ

t − 1
1− σ

∣∣∣∣∣k0

)
,

s.t. kt+1 = eskα
t − ct + (1− δ)kt,

Pr(si|si) = πi.

A state is now given by a combination of a level of capital k and the
value of the shock s. In terms of the Bellman equation, we have:

v(k, s) = max
c≤eskα+(1−δ)k

{
c1−σ − 1

1− σ
+ β

2

∑
i=1

Pr(si|s)v(esi kα − c + (1− δ)k, si)

}
.

The value function v(k, s) now depends on two variables, the capital
stock k and the shock s. Likewise, the policy function will now be a

65

function that takes a value for k and s and gives a level of consump-
tion, g(k, s). Given that we have two levels for the shocks, we have
two functions v(k, s1) and v(k, s2) and two policy functions g(k, s1)

and g(k, s2).
In this sense, we can encode the value function v and policy func-

tion g as an N × 2 dimensional vector.
Try to code this problem using a Howard improvement with

parameter values,

σ = 1.5, δ = 0.1, β = 0.95, α = 0.3,

s1 = 0.8, s2 = 1.2, π1 = π2 = 0.9,

and a grid size of 1000 where k is equally spaced between 0.2 and 6.
Try to use the output of the program to simulate trajectories of the

capital stock and trajectories of consumption paths over time.

Applications

Consider the problem of a cake of size x that has to be eaten in
its entirety in one single period. There is a taste shock z that takes on
two possible values 0 < z` < zh. Let p` be the probability of the taste
next period equals z` when it is z` today and let ph be the probability
that the taste tomorrow is zh given that it is zh today. As such:

Pr(z`|zell) = p`,

Pr(zh|z`) = 1− p`,

Pr(zh|zh) = ph,

Pr(z`|zh) = 1− ph.

Eating the cake of size x gives a value of zu(x) where z is either equal
to zh or z`, depending on the taste value and u(x) > 0 is assumed to
be strictly increasing.

To ad an interesting twist, assume that if the cake is not eaten
today, then a fraction (1− δ) of the cake is lost. The state of the system
depends on the size of the cake and the value of the taste shock. The
Bellman equation takes the following expression:

v(x, z`) = max{z`u(x); β[p`v(δx, z`) + (1− p`)v(δx, zh)]},
v(x, zh) = max{zhu(x); β[phv(δx, zh) + (1− ph)v(δx, z`)]}.

If the maximum is for the first component, then the cake will be
eaten. Else, the decision maker will wait one period. It is easy to see
that the function v(x, z) should be non-decreasing in x.

Lemma 10. The fixed point of the Bellman equation satisfies that for all sizes
x, v(x, zh) ≥ v(x, z`) and zhu(x) ≥ βv(δx, zh). As a result, the cake is
always eaten if z = zh.

Proof. Let,

D = {v : for all x, v(x, zh) ≥ v(x, z`) and zhu(x) ≥ βv(δx, zh)}.

Notice that D is a closed set, so we only need to show that T(D) ⊆ D.
Let v ∈ C. We need to show that Tv ∈ D. For the first condition,

68

there are two possibilities if (Tv)(x, z`) = z`u(x), we have:

(Tv)(x, z`) = z`u(x) < zhu(x) ≤ (Tv)(x, zh).

Next, let (Tv)(x, z`) = β[p`v(δx, z`) + (1− p`)v(δx, zh)]. Then:

(Tv)(x, z`) = βp`v(δx, z`) + β(1− p`)v(δx, zh),

≤ βv(δx, zh) ≤ zhu(x) ≤ (Tv)(x, zh).

The second and third inequality follows from the assumption that
v ∈ D. This shows the first part of the proof.

Next, we need to show that zhu(x) ≥ β(Tv)(δx, zh).

β(Tv)(δx, zh) = β max{zhu(δx), β[phv(δ2x, zh) + (1− ph)v(δ2x, z`)]},
≤ β max{zhu(δx), βv(δ2x, zh)},
≤ β max{zhu(δx), zhu(δx)} = βzhu(δx) ≤ zhu(x).

The second line uses v ∈ D which implies v(δ2x, z`) ≤ v(δ2, zh). The
third line again uses v ∈ D which implies βv(δ2, zh) ≤ zuu(δx). The
last inequality follows from β, δ < 1.

Given that the fixed point, v, is in D, we conclude that:

zhu(x) ≥ βv(δx, zh),

≥ β[phv(δx, zh) + β(1− ph)v(δx, z`)].

As such, v(x, zh) = zhu(x) which means that the cake will be eaten if
z = zh.

Given this result, we can simplify the Bellman equation:

v(x, z`) = max{z`u(x), β[p`v(δx, z`) + (1− p`)zhu(δx)]}.

This follows from the fact that v(δx, zh) = zhu(δx).
Now, we would like to determine what happens if z = z`. In this

state, the decision maker faces a trade off between consuming now
immediately and getting z`u(x) or waiting one period and hoping
that the state changes to z = zh, in which case, she will eat the cake.

Consider the following decision rule for some x∗. If z = z` and
x ≤ x∗, eat the cake. If z = z` and x > x∗, don’t eat the cake. We
would like to know when this is an optimal strategy.

Assume that we are at x∗. In this case, the decision maker should
be indifferent between eating and not eating. As such:

z`u(x∗) = β[p`v(δx∗, z`) + (1− p`)zhu(δx, zh)]

Also δx∗ < x∗, so it is optimal to eat at state (δx∗, z`) which gives

69

v(δx∗, z`) = z`u(δx). This gives:

z`u(x∗) = β[p`z`u(δx∗) + (1− p`)zhu(δx, zh)],

= β(p`z` + (1− p`)zh)u(δx∗),

↔u(δx∗)
u(x∗)

=
z`

β(p`z` + (1− p`)zh)
.

Lemma 11. Assume that there is an x∗ such that:

x ≤ x∗ ↔ z`
β (z`p` + zh(1− p`))

≥ u(δx)
u(x)

.

Then it is optimal to eat at z = z` if and only if x ≤ x∗.

Proof. Let D be the set such that:

D = {v : ∀x ≤ x∗, v(x, z`) = z`u(x)}.

Let us show that T(D) ⊆ D. We have that for x ≤ x∗:

(Tv)(x, z`) = max{z`u(x), β[p`v(δx, z`) + (1− p`)zhu(δx)]},
= max{z`u(x), β[p`z`u(δx) + (1− p`)zhu(δx)]},
≤ max{z`u(x), z`u(x)} = z`u(x).

The second line uses the fact that δx ≤ x∗ so v(δx, z`) = z`u(δx).
Together with (Tv)(x, z`) ≥ z`u(x), we obtain that (Tv)(x, z`) =

z`u(x) as was to be shown.
Next, let D̃ be the set such that:

D̃ = {v : ∀x > x∗, v(x, z`) > z`u(x)}

Let us show that T(D) ⊆ D̃. Let x > x∗. Then:

(Tv)(x, z`) = max{z`u(x), β[p`v(δx, z`) + (1− p`)zhu(δx)]},
≥ max{z`u(x), β[p`z`u(δx) + (1− p`)zhu(δx)]},
= β[p`z`u(δx) + (1− p`)zhu(δx)] > z`u(x).

The first inequality follows from the fact htat v(δx, z`) ≥ z`u(δx). The
equality and last strict inequality follows from the assumption.

Optimal stopping problems

Optimal stopping problems are a special class of problems in
where the discrete choice is a single decision to put an end to an
ongoing problem.51 51 For example, a student has to decide

when to give up trying to solve a
homework problem. A firms decides
when to leave an industry, a firm
decides when to stop working on the
development of a new product or an
unemployed worker has to decide
when to accept a job from a sequence of
offers.

As a first example, consider a burglar who loots a house every day.
The daily gains are independent and identically distributed on R+.

70

With a certain probability 1− p ∈ (0, 1), the burglar is caught and all
her fortune is gone. The utility function of the burglar (with fortune
x) is given by 1− e−αx.

The Bellman equation takes the form:

v(x) = max
{

1− e−αx, βp
∫

R+

v(x + g)P(dg)
}

where P is the distribution of gains.
Now, assume that there is an x∗ such that the Burglar stops for

all x ≥ x∗ and continues for all x < x∗. In this case, she should be
indifferent between stopping and continuing at x∗. This gives:

1− e−αx∗ = βp
∫

R+

v(x∗ + g)P(dg),

= βp
∫

R+

(1− e−α(x∗+g))P(dg),

= βp
(

1− e−αx∗
∫

R+

e−αgP(dg)
)

,

= βp(1− Re−αx∗)

where R =
∫

e−αgP(dg) which is a fixed number. So:

(1− βp) = (1− βpR)e−αx∗ .

The right hand side is decreasing in x∗.

Lemma 12. Let x∗ be the value that satisfies

(1− βp) = (1− βpR)e−αx∗ ,

then it is optimal to stop if and only if x ≥ x∗.

Proof. Let D = {v : if x ≥ x∗, then v(x) = e−αx}. We show that
T(D) ⊆ D.

Let v ∈ D and assume that x ≥ x∗. Then:

(Tv)(x) = max{e−αx, βp
∫

R+

v(x + g)P(dg)},

= max{e−αx, βp
∫

R+

e−α(x+g)Pdg},

= max{e−αx, e−αxβpR} = e−αx,

as needed to be shown.
Next let D′ = {v : if x < x∗, then v(x) > e−αx}. Let us show that

71

T(D) ⊆ D′. Let v ∈ D and assume that x < x∗. Then:

(Tv)(x) = max{e−αx, βp
∫

R+

v(x + g)P(dg)},

= max{e−αx, βp
∫

R+

e−α(x+g)Pdg},

= max{e−αx, e−αxβpR} > e−αx,

Consider an agent that visits stores at a rate of one per period.
Then given that the price quoted in the current period is p, the in-
dividual can choose to stop now and purchase the good or go to
the next store. If he stops, he gets u− p where u is the value of the
good bought. If he continuous, he enters the next period as an active
searcher. The Bellman equation is,

v(p) = max{u− p;−βc + β
∫ ∞

0
v(p̃)F(dp̃)}.

Observe that the second term −βc + β
∫ ∞

0 v(p̃)F(dp̃) = v̄ is indepen-
dent of the current price p as we assumed that prices are i.i.d. drawn.
The first term is declining in p so there is a unique value p∗ where
u− p∗ = −βc + β

∫ ∞
0 v(p̃)F(dp̃). From this, it follows that v̄ = u− p∗.

Any price greater than p∗ induces further search while any value
below p∗ let’s the agent buy the good. We have that,

u− p∗ = −βc + β
∫ p∗

0
v(p̃)F(dp̃) + β

∫ ∞

p∗
v(p̃)F(dp̃),

= −βc + β
∫ p∗

0
(u− p̃)F(dp̃) + β

∫ ∞

p∗
(u− p∗)F(dp̃),

= −βc + β(u− p∗) + β
∫ p∗

0
(p∗ − p̃)F(dp̃).

So,

(u− p∗)(1− β) = −βc + β
∫ p∗

0
(p∗ − p̃)F(dp̃),

→p∗ = u +
β

1− β

[
c−

∫ p∗

0
(p∗ − p̃)F(dp̃)

]
.

This is the fundamental reservation price equation of the problem.
The first term gives the immediate benefit of purchasing. The second
term gives the option value (cost) of waiting.

Finite horizon dynamic optimization

A finite horizon dynamic programming problem differs from the
infinite version in the sense that the horizon over which the problem
is considered finishes ends. In this chapter, we will demonstrate the
power of dynamic programming by means of various examples.

The most important feature of a dynamic programming problem is
that it expresses the solution of a problem in terms of the solutions of
smaller sub-problems. As these subproblems are themselves defined
into smaller subproblems, the original problem can be solved recur-
sively: first solve the smallest subproblems and use their solutions to
solve the bigger problems.

The way a problem is defined in terms of smaller subproblems is
done using the Bellman equation of the problem.

Shortest path problem

A shortest path problem is defined in terms of a network. This
network consists of a number of nodes and directed edges between
the nodes. In the easiest setting, the network contains no cycles.
There are two special nodes, called the source or starting node and
the sink or final node. We try to find the shortest path from the
starting node to the final node.

As an example, consider the network below. Here a is the starting
node and j is the end node. Connections between node have a certain
cost. For example, to go from a to c, it costs 4. The problem that
we try to solve is how to go from a to j with the lowest amount of
total cost. For example, the path a − b − e − h − j has a total cost
of 2 + 7 + 1 + 3 = 13. The path a − c − g − i − j has a total cost of
4 + 6 + 3 + 4 = 17 and so on.

74

a

b

c

d

e

f

g

h

i

j

2

4

3

7

4

3

6

1

5

1

6

6

4

3

3

3

4

One way to solve this problem would be to apply a brute force
method: enumerate all possible paths, compute for each one its total
cost and look for the path that minimizes the cost. For our particular
example, there are a total of 12 paths, so this is a not too difficult
problem. However, if we consider networks of larger size, the number
of paths will be come exponentially big, so this brute force approach
is no longer efficient.

An alternative approach is to use dynamic programming. Let
x be a node in the network and let us denote by v(x) the shortest
distance from x to the final node j. Notice here that we look at the
subproblem that starts at x (instead of at the starting node a) and
tries to find the minimal path from x to j.

Let us denote by s(x) the set of all nodes that can be reached
from x in one step. For example, for node b: s(b) = {e, f }. Now, the
optimal path from x to j also has to pass through one of the nodes
in s(x), say y ∈ s(x). If so, then the shortest path from x to j can be
written as the sum of the cost of going from x to y, say c(x, y) plus
the shortest distance from y to j:

v(x) = c(x, y) + v(y).

Of course, we don’t know ex-ante wheter the shortest path from x to
j really goes through the node y ∈ s(x). However, it must go through
one of the nodes in s(x). Moreover, given minimality of v(x) we have
that:

v(x) = min
y∈s(x)

{c(x, y) + v(y)} .

This is the Bellman equation for the problem. This equation states
that the minimal cost of going from x to j can be found by finding
the successor y ∈ s(x) that minimizes the cost of going from x to y,
i.e. c(x, y) plus the minimal cost of going from y to j. Notice that if
{j} = s(x), i.e. the only successor of x is j, then:

v(x) = c(x, j).

75

So we know the value of v(x) for all nodes whose only successor is j.
These give us the base cases we need to solve the Bellman equation.
Let’s apply this principle to our example network. For the base case,
there are two nodes that have j as their successor: h and i. We find:

v(h) = 3 v(i) = 4.

Next we can solve the minimal path for e:

v(e) = min{1 + v(h), 6 + v(i)} = min{1 + 3, 6 + 4} = 4,

We find that V(e) = 4 which is obtained via the path e − h − j.
Similarly, we can solve the minimal paths for f and g:

v(f) = min{6 + v(h), 4 + v(i)} = min{6 + 3, 4 + 4} = 8→ f − i− j,

v(g) = min{3 + v(h), 3 + v(i)} = min{3 + 3, 3 + 4} = 6→ g− h− j.

Given these solutions, we can subsequently find the values of
v(b), v(c) and v(d):

v(b) = min{7 + v(e), 4 + v(f)} = min{7 + 4, 4 + 8} = 11→ b− e− h− j,

v(c) = min{3 + v(e), 6 + v(g)} = min{3 + 4, 6 + 6} = 7→ c− e− h− j,

v(d) = min{1 + v(f), 5 + v(g)} = min{1 + 8, 5 + 6} = 9→ d− g− h− j.

Finally, we can find the value of v(a):

v(a) = min{2 + v(b), 4 + v(c), 3 + v(d)},
= min{2 + 11, 4 + 7, 3 + 9} = 11→ a− c− e− h− j.

The advantage of the dynamic optimization formulation is that we
do not need to go over all paths, but only solve one problem for
each vertex. By first finding the optimal paths from all intermediary
nodes, the procedure exclude paths that will never be taken early
onwards and it thereby severely restricts the space of paths we need
to consider.

Networks with cycles

Let us have a look at a slight generalization of the previous minimal
cost problem. Consider the following network:

b

ca

e d

6 4

-5

3

-4

8

1

2

7

76

This network differs from the previous one in the sense that now,
we allow for cycles in the graph. Again, similar to before, we would
like to find out the shortest path between any two nodes in the
network. For example, the direct connection from a to b has a cost of
6. However, there is an alternative path a− e− d− c− b whose total
cost equals −2 which is smaller.

Let v(x, y) be the value of the shortest path from node x to node
y in the network. We would like to write this function as a recursive
problem. In other words, can we express the value v(x, y) in terms of
the values of some sub-problem.

Notice that in this case, we can not simply write it in terms of
subproblems of the successors of x as this recursion will never give
us any base problems whose value we already know.

As such, we need to find a different structure. Let S be a subset
of all nodes and let us write by v(x, y, S) the cost of the shortest
path from x to y that only takes paths whose intermediate nodes are
contained in S. For example, v(a, b, ∅) = 6 as the cost of going from a
to b without involving any intermediary notes is given by the direct
edge with cost 6. However, v(a, b, {e, d, c}) = −2 as this allows the
path a− e− d− c− b.

Now, consider a minimal path from x to y whose intermediate
nodes are in some subset S of the total set of nodes; with total cost
v(x, y, S). Then for some z ∈ S, there are two options. First, it is
possible that the path does not contain z. In this case, we have that:

v(x, y, S) = v(x, y, S− {z}).

As the minimal path from x to y through S is the same as the path
from x to y through S− {z}. Second, it is possible that the minimal
path from x to y in S does contains the node z. For such instances, it
is possible to break this minimal path in two sub-paths: a first sub-
path goes from x to z. The second sub-path goes from z to y. As the
path is minimal, we have that in this case

v(x, y, S) = v(x, z, S− {z}) + v(z, y, S− {z}).

As v(x, y, S) is the minimal path, it must be that:

v(x, y, S) = min

{
v
(

x, y, S− {z}
)
,

v
(

x, z, S− {z}
)
+ v
(
z, y, S− {z}

) }
This allows us to compute v(x, y, S) recursively as it expresses it in
terms of smaller subproblems in terms of the set S.

Let us see how this algorithm works. First we need a list of nexted
sets, say ∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, d, e}.

Let us begin by the base case, where S = ∅, giving the values
v(x, y, ∅). This is easy. The shortest path from x to y that has no

77

intermediary nodes is simply the path x− y. As such, v(x, y) = c(x, y)
where c(x, y) is the cost of the edge from x to y. Let us put these in a
table where in row x and column y, we put c(x, y) and we enter ∞ if
there is no direct path from x to y (if there is no path from x to y its
cost is ∞).

a b c d e
a 0 6 8 ∞ -4
b ∞ 0 ∞ 1 7

c ∞ 4 0 ∞ ∞
d 2 ∞ -5 0 ∞
e ∞ ∞ ∞ 3 0

For the next step, we look at the set S = {a}. Then for all x, y, we
have:

v(x, y, {a}) = min{v(x, y, ∅), v(x, a, ∅)+ v(a, y, ∅)} = min{c(x, y), c(x, a)+ c(a, y)}.

Applying this gives the following table:

a b c d e
a 0 6 8 ∞ -4
b ∞ 0 ∞ 1 7

c ∞ 4 0 ∞ ∞
d 2 8 -5 0 -2
e ∞ ∞ ∞ 3 0

The numbers in red shows the modifications. For example, we have
that in row d and column b:

v(d, b, {a}) = min{v(d, b, ∅), v(d, a, ∅) + v(a, b, ∅)},
= min{∞, c(d, a) + c(a, b)} = 8.

Next, we extend S to {a, b}. Then:

v(x, y, {a, b}) = min{v(x, y, {a}), v(x, b, {a}) + v(b, y, {a})}.

This gives the following table:

a b c d e
a 0 6 8 7 -4
b ∞ 0 ∞ 1 7

c ∞ 4 0 5 11

d 2 8 -5 0 -2
e ∞ ∞ ∞ 3 0

Next, we expand to S = {a, b, c} giving:

78

a b c d e
a 0 6 8 7 -4
b ∞ 0 ∞ 1 7

c ∞ 4 0 5 11

d 2 -1 -5 0 -2
e ∞ ∞ ∞ 3 0

Then S = {a, b, c, d}:

a b c d e
a 0 6 2 7 -4
b 3 0 -4 1 -1
c 7 4 0 5 3

d 2 -1 -5 0 -2
e 5 2 -2 3 0

And finally for S = {a, b, c, d, e}:

a b c d e
a 0 -2 -6 -1 -4
b 3 0 -4 1 -1
c 7 4 0 5 3

d 2 -1 -5 0 -2
e 5 2 -2 3 0

This shows that indeed, v(a, b, S) = −2. We can easily write the
computation of v(x, y, S) as the output of the following algorithm.52 52 This algorithm is known as the

Floyd-Warshall algorithm.
For i in 1 : N

For x in 1 : N

For y in 1 : N
v(x, y) = min{v(x, y), v(x, i) + v(i, y)}.

end

end

end

The outer loop iterates over the composition of the set S = {1, . . . , i}.
The second loop is over the starting nodes x in v(x, y, S) and the
final loop is over the end nodes y in v(x, y, S). The algorithm has
worst time complexity θ(n3) where n is the number of nodes in the
network.

Currency exchange

Consider a set C = {c1, . . . , cN} of coins of various values and let m
be an amount of money. What is the minimal total number of coins
we need in order to exactly pay the amount m.

79

As an example we can have C = [1, 2, 5] so we have a coin of value
1, a coin of value 2 and a coin of value 5. Let m = 11. In this case, we
can pay the amount m by using 1 piece of 5 and 3 pieces of 2, 4 coins.
Alternatively, more efficiently is to use 2 piece of 5 and one piece of 1.

Let v(m) be the minimal number of coins needed to pay an
amount m. We would like to write v(m) as a recursive problem.

Consider a coin in C with value c. If c is used to pay the amount m,
then we can first pay the amount m− c and then pay the remaining
amount with one additional coin. As such:

v(m) = 1 + v(m− c).

however, we don’t know if coin c is used in the payment of m. As
such, we should take the minimum over all c ∈ C. this gives:

v(m) = min
c∈C
{1 + v(m− ci)} subject to ci ≤ m.

As a starting value we can set v(0) = 0, as we need zero coins to pay
an amount of zero.

The table below gives the computation for the particular example.
The first column gives the amounts m. The 2nd to fourth column
gives the values for,

1 + v(m− c) when c ≤ m.

Finally, the last column gives the minimum over all coins and is
therefore equal to v(m).

For example, in row 6, we would like to determine v(6). This is
given by:

min{1 + v(5), 1 + v(3), 1 + v(1)} = min{2, 3, 2} = 2.

m c1 = 1 c2 = 2 c3 = 5 v(m)

0 NA NA NA 0

1 1 NA NA 1

2 2 1 NA 1

3 2 2 NA 2

4 3 2 NA 2

5 3 3 1 1

6 2 3 2 2

7 3 2 2 2

8 3 3 3 3

9 4 3 3 3

10 4 4 2 2

11 3 4 3 3

Based on the last row, we see that v(11) = 3. Tracing back the
minima, we see that this can be obtained by two pieces of 5 and one
piece of 1.

80

Subset addition

Consider a set of strict positive numbers S and a number m. How
many combinations of numbers in S have the property that they add
up to the number m.

To take a concrete example, let S = {2, 4, 6, 8, 10} and let m = 16.
Then we have that 16 = 2 + 4 + 10 but also 16 = 10 + 6 and 16 =

6 + 2 + 8. A careful check shows that there are no other subset of
numbers that add up to 16, so here the answer is 3.

A brute force approach would be to look at all possible subsets
of S and see which ones add up to m. If S contains N elements, this
would require us to go over N! = N(N − 1)(N − 2) . . . 2.1 subsets
which is huge even for moderate N. As before, let us write this
problem in a recursive form. Let v(m, S) be the number of ways one
can add together distinct numbers in S to get m. Let x ∈ S. Then
any sum of numbers that add up to m either includes x or it does
not include x. Consider first the ones that do not include x. For this,
we have that there are v(m, S − {x}) ways to sum to m among all
numbers in S excluding x. Next, for the sums that include x, there
are a total of v(m− x, S− {x}) such combinations as including x to
these combinations indeed adds up to m. As such:

v(m, S) =

{
v(m, S− {x}) if x > m,
v(m, S− {x}) + v(m− x, S− {x}) if x ≤ m.

Here as starting values we should set v(0, S) = 0 as there is exactly
one way to sum to zero. Next, we also set v(m, ∅) = 0 whenever
m > 0 as there is no way to obtain m > 0 if there are no terms in S.

The table below gives the computations

81

m ∅ {2} {2, 4} {2, 4, 6} {2, 4, 6, 10} {2, 4, 6, 10, 8}
0 1 1 1 1 1 1

1 0 0 0 0 0 0

2 0 1 1 1 1 1

3 0 0 0 0 0 0

4 0 0 1 1 1 1

5 0 0 0 0 0 0

6 0 0 1 2 2 2

7 0 0 0 0 0 0

8 0 0 0 1 1 2

9 0 0 0 0 0 0

10 0 0 0 1 2 3

11 0 0 0 0 0 0

12 0 0 0 1 2 3

13 0 0 0 0 0 0

14 0 0 0 0 1 3

15 0 0 0 0 0 0

16 0 0 0 0 2 3

As an example for how this table is filled, consider the element at
row 12 and column {2, 4, 6, 10}. We have that 10 ≥ 12 so,

v(12, {2, 4, 6, 10}) = v(12, {2, 4, 6}) + v(2, {2, 4, 6}) = 1 + 1 = 2.

Knapsack problem

Consider a set of items S. Each item i ∈ S has a weight wi and a
value xi. You also have a knapsack to put items inside. The prob-
lem, however is that the total weight of the bag cannot exceed some
threshold m. What items should you put in the bag in order to maxi-
mize the total value in the bag.

Let v(m, S) be the maximal value of the bag with threshold m and
items S. For an item i, it is either in the bag or not. If it is in the bag
then the value is given by xi plus the value of the bag without the
item i. The value of the bag without the item should be equal to
the maximal value of a knapsack with capacity m− vi and item set
S = {i}. As such:

v(m, S) = v(m− vi, S− {i}).

If the item i is not in the optimal knapsack, then the maximal value is
given by v(m, S− {i}). As such:

v(m, S) = v(m, S− {i}).

As the bag is optimal, the value of v(m, S) should equal the maxi-

82

mum of these two.

v(m, S) =

 max

{
v(m− wi, S− {i}) + xi,
v(m, S− {i})

}
if wi ≤ m,

v(m, S− {i}) if wi > m

The starting values are v(0, S) = 0 as a knapsack with capacity zero
cannot have any value. Also, v(m, ∅) = 0 as there are no items to put
into the bag in this case.

As an example consider a set S of 4 items with weights and values
given as below:

item i weight vi value xi

1 1 1

2 3 4

3 4 5

4 5 7

Consider a bag of total weight 7. We can solve the problem by mak-
ing a table as below. The table is filled in column by column. For
example in column {1, 2, 3} at row m = 6 one compares v(6, {1, 2})
which is 5 with the value of v(6− 4, {1, 2}) + x3 = 1 + 5 = 6 and
choose the maximal.

m ∅ {1} {1, 2} {1, 2, 3} {1, 2, 3, 4}
0 0 0 0 0 0

1 0 1 1 1 1

2 0 1 1 1 1

3 0 1 4 4 4

4 0 1 5 5 5

5 0 1 5 5 7

6 0 1 5 6 8

7 0 1 5 9 9

We see that in this case, the bag has total value 9, obtained by includ-
ing the items 3 and 2.

Longest common subsequence

Consider two sequence s1 = x1x2 . . . xN and s2 = y1y2 . . . yM of letters.
What is the longest common subsequence of s1 and s2. For example if
s1 = abcda f and s2 = acbc f then the solution is given by abc f which
gives four.

As before, we try to model this as a recursive problem. Let us
denote by v(s1, s2) the length of the longest common subsequence.
Let xN and yM be the last letter of the sequence s1 and s2. There are
three cases, either xN = yM are part of the common subsequence. In

83

this case, we have that:

v(s1, s2) = v(s1 − xN , s2 − yM) + 1.

where we denote by s1 − xN the sequence s1 without its last letter and
s2 − yM the sequence s2 without its last letter. Second, it is possible
that xN is not part of the subsequence, then:

v(s1, s2) = v(s1 − xN , s2).

finally if yM is not part of the subsequence, then:

v(s1, s2) = v(s1, s2 − yM).

As such:

v(s1, s2) = max

v(s1 − xN , s2 − yM) + 1xN=yM ,
v(s1 − xN , s2),
v(s1, s2 − yM)

 .

The starting values are v(∅, s2) = v(s1, ∅) = 0. For the sequences
s1 = abcda f and s2 = acbc f , the computation is given in the table
below

∅ a b c d a f
∅ 0 0 0 0 0 0 0

a 0 1 1 1 1 1 1

c 0 1 1 2 2 2 2

b 0 1 2 2 2 2 2

c 0 1 2 3 3 3 3

f 0 1 2 3 3 3 4

Ever cell is computed by taking the max of one plus the cell to the
top left (in case the value in the row and column are equal) or taking
the max of the value to the left or the top.

Efficient matrix multiplication

If you multiply a matrix of size [n, m] with a matrix of size [m, k]
then the total number of operations is given by n × m × k: you
need to compute a new matrix of size n × k and each time this is
done by multiplying k numbers together and adding them up. As
such, if you have to multiply a sequence of matrices together in the
shortest amount of time, it does matter in which order you do the
multiplication.

As an example, consider 4 matrices A1, A2, A3, A4 and assume that
the sizes are given by:

84

Matrix size [ri, ci]

A1 [2,3]
A2 [3,6]
A3 [6,4]
A4 [4,5]

Here we denote by ri the number of rows of Ai and ci the number of
columns of Ai. Assume we need to take the product A1 × A2 × A3 ×
A4.

Let us denote by v(i, j) the cost of multiplying Ai × . . .× Aj. Then
for any k ∈ {i, i + 1, . . . , j − 1} we can first multiply Ai × . . . × Ak,
then Ak+1 × . . .× Aj and finally we multiply the result of these two
matrices together. (If k = 1 or k = j− 1 the first or second product
is simply the matrix Ai or Aj which has a cost of zero). As such, the
minimal cost should equal:

v(i, j) ≤ v(i, k) + v(k + 1, j) + (ri × ck × cj).

Notice that Ai × . . . × Ak has ri rows and ck columns and that the
matrix Ak+1 × . . .× Aj has rk+1 = ck rows and cj columns. the first
gives the cost of mulitplying the matrices Ai up to Ak together. The
second the cost of multiplying Ak+1 up to Aj together and finally the
cost of multiplying the resulting two matrices together. Initial costs
are obtained by setting v(i, i) = 0 for all i. The recursion is given by:

v(i, j) = min
k=i,i+1,...,j−1

{v(i, k) + v(k + 1, j) + (ri × ck × cj)}.

For the example, we have that:

v(1, 2) = 0 + 0 + 2× 3× 6 = 36,

v(2, 3) = 0 + 0 + 3× 6× 4 = 72,

v(3, 4) = 0 + 0 + 6× 4× 5 = 120.

Next:

v(1, 3) = min{v(1, 2) + v(3, 3) + r1 × c2 × c3, v(2, 3) + v(1, 1) + r1 × c1 × c3},
= min{36 + 2 · 6 · 4, 72 + 2 · 3 · 4} = 84,

v(2, 4) = min{v(2, 3) + v(4, 4) + r2 × c3 × c4, v(3, 4) + v(2, 2) + r2 × c2 × c4, },
= min{72 + 3 · 4 · 5, 120 + 3 · 6 · 5} = 132.

Finally:

v(1, 4) = min{v(1, 1) + v(2, 3) + r1 × c1 × c4, v(1, 2) + v(2, 4) + r1 × c2 × c4, v(1, 3) + v(4, 4) + r1 × c3 × c4},
= min{132 + 2 · 3 · 5, 36 + 120 + 2 · 6 · 5, 84 + 2 · 4 · 5} = 124.

One can see that it is therefore optimal to first multiply A1 and A2

together (cost 36). Then this result should be multiplied by A3 giving
total cost of 84. Finally, this matrix is multiplied by A4 giving a total
cost of 124.

85

The egg drop problem

Assume that you have a number of eggs and an apartment building.
You need to figure out the lowest floor from which you break an egg
when it is dropped. What is the minimal amount of times you need
to drop an egg in order to find this floor for all possible cases.

As an example, consider three floors and 1 egg. In this case, you
first need to drop the egg from the first floor. If it breaks, your an-
swer is 1. If not, you drop the egg from the second floor. If it breaks,
your answer is 2. Finally, you drop the egg from the third floor. If
it breaks, your answer is 3. If not, no floor is high enough to break
an egg. As such, in order to figure out the answer to the egg-drop
problem, you must have 3 tries at worst.

Notice that this cannot be improved upon. In particular, if you first
drop the egg from the 2nd or 3rd floor, it might break immediately,
in this case, you will never find out if the egg might have also broken
from the first floor. In other words if you have only one egg and m
floors, the largest number of tries is equal to m. So:

v(m, 1) = m.

If you have more eggs, you can improve upon this by being a bit
more aggressive. Assume, for example if you have two eggs and 3

floors. In this case, you might start to drop one egg from floor 2. If
it breaks, you drop your second egg from the first floor and you find
your answer in 2 tries. If the egg does not break from the second
floor, you drop it again from the third floor to find you final answer.
In this case, two drops is sufficient to find out the answer, i.e.

v(3, 2) = 2 ≤ v(3, 1) = 3.

Let us try to find the recursion. Assume that you have m floors and e
eggs. If you drop an egg from floor i two things can happen. Either it
breaks. In this case, you can restrict yourself to floors 1, . . . , i− 1 and
have e− 1 eggs left, so v(i− 1, e− 1) tries are remaining at most.

If the egg does not break, you can restrict yourself to floors i +
1, . . . , m with a total of e eggs, so at most v(m− i, e) tries remain. This
gives that:

v(m, e) ≤ 1 + max{v(i− 1, e− 1), v(m− i, e)}.

you will choose the floor that minimizes the right hand side. So:

v(m, e) = 1 + min
i≤m
{max{v(i− 1, e− 1), v(m− i, e)}}.

The default values are given by v(1, e) = 1 and v(m, 1) = m.

86

As an example, assume we hat 2 eggs and 6 floors. First we have:

v(1, 1) = v(1, 2) = v(1, 3) = 1,

and

v(2, 1) = 2; v(3, 1) = 3, v(4, 1) = 4, v(5, 1) = 5, v(6, 1) = 6.

Next, consider v(2, 2). Then if we drop the egg from the first floor we
have:

1 + max{v(0, 1), v(1, 2)} = 2.

If we drop it from the second floor we have:

1 + max{v(1, 1), v(0, 2)} = 2.

This gives v(2, 2) = 2. Next, let’s have a look at v(3, 2). If we drop the
egg from the first floor, we obtain:

1 + max{v(0, 1), v(2, 2)} = 3,

If we drop it from the second floor, we get:

1 + max{v(1, 1), v(1, 2)} = 2.

If we drop it from the third floor, we have:

1 + max{v(2, 1), v(1, 2)} = 3.

As such, v(3, 2) = 2. Now consider v(4, 2) going over the different
cases gives:

1 + max{v(0, 1), v(3, 2)} = 3,

1 + max{v(1, 1), v(2, 2)} = 3,

1 + max{v(2, 1), v(1, 2)} = 3,

1 + max{v(3, 1), v(0, 2)} = 4.

As such, v(4, 2) = 3. Next consider 5 floors. A similar calculation
gives that v(5, 2) is obtained as the minimum of:

1 + max{v(0, 1), v(4, 2)} = 4,

1 + max{v(1, 1), v(3, 2)} = 3,

1 + max{v(2, 1), v(2, 2)} = 3,

1 + max{v(3, 1), v(1, 2)} = 4,

1 + max{v(4, 1), v(0, 2)} = 5.

87

We see that v(5, 2) = 3. Finally for v(6, 2) we have that it equals the
minimum of:

1 + max{v(0, 1), v(5, 2)} = 4,

1 + max{v(1, 1), v(4, 2)} = 4,

1 + max{v(2, 1), v(3, 2)} = 3,

1 + max{v(3, 1), v(2, 2)} = 4,

1 + max{v(4, 1), v(1, 2)} = 5,

1 + max{v(5, 1), v(0, 2)} = 6.

	Introduction
	Mathematical Preliminaries
	Banach spaces
	Complete metric spaces
	Contraction mappings
	Theorem of the maximum

	Dynamic programming under certainty
	Properties of the Bellman fixed point
	Euler equations

	Numerical methods
	Value function iteration
	Interpolation
	Howard improvement (policy iteration)

	Some applications
	Optimal tree growth
	Optimal policy business cycles

	Stochastic dynamic programming
	Simulations for models of uncertainty
	Applications
	Optimal stopping problems

	Finite horizon dynamic optimization
	Shortest path problem
	Currency exchange
	Subset addition
	Knapsack problem
	Longest common subsequence
	Efficient matrix multiplication
	The egg drop problem

